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Energy
and

Noise
• Signal metrics:  mean, power, energy 
• Signal-to-Noise Ratio
• Random processes
• Probability Density Function, mean, variance
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Is this true in the real world?

Lab 3 in the Ideal World

• Assuming we get our demodulation frequency and 
phase just right, we can perfectly reconstruct the 
originally transmitted signal at the receiver
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Lab 3 at a Real Lab Bench

• Measured receive signal using monitor_receive(‘rx_a’):
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The Issue of Noise

• Noise is a non-predictable (i.e. random), 
corrupting signal that adds to the desired signal
– For RF receiver, most of it comes from the analog 

circuits that amplify and demodulate the input signal
• An undesired signal is a predictable, corrupting 

signal which also adds to the desired signal
– May be called noise if it is difficult to predict
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• Receiver antenna is limited in its ability to capture 
transmitter energy according to its area and 
distance, r, from transmitter
– Received signal energy is a function of these parameters
– In free space, received energy is proportional to 1/r2

Energy Transfer in Wireless Communication



M.H. Perrott © 2007 Energy and Noise, Slide 6

0

TX(f)

100 kHz
f

0

RX(f)

f

RF

Transmitter

RF

Transmission

RF

Receiver

Voice

RF

Reception

tx(t)

450 MHz 450 MHz100 kHz

rx(t)
H(f)

Lowpass

Antenna
Area

r

Signal

Noise

Signal Versus Noise

• Moving the receiver closer to the transmitter 
increases desired signal energy
– Noise from analog receiver circuits is unchanged

How is system performance impacted?
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Development of Metrics for Analysis

• It is often useful to create a mapping between a 
signal waveform and a numerical value
– Such a mapping is called a metric
– Examples:  energy, power, average, variance

• In this class, we prefer to do analysis on 
discrete-time signals
– Our labs focus on Matlab sequences rather than analog 

signals in the underlying hardware
– Key ideas transfer to analog signal analysis quite readily

n

x[n]

1

x(t)

t

Real World Matlab
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• DC average or mean, μx, is defined as

• Power, Px, and energy, Ex, are defined as

– For communication systems, we often remove the mean 
since it is essentially irrelevant in terms of information:

Definition of Mean, Power, and Energy

n

x[n]

1
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Definition of Signal-to-Noise Ratio

• Signal-to-Noise ratio (SNR) indicates the relative 
impact of noise in system performance

• We often like to use units of dB to express SNR:
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SNR Example

• Scaling the gain factor A
leads to different SNR values
– Lower A results in lower SNR
– Signal quality steadily degrades 

with lower SNR
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Analysis of Random Processes
• Random processes, such as 

noise, take on different 
sequences for different trials
– Think of trials as different 

measurement intervals from the 
same experimental setup (as in Lab)

• For a given trial, we can apply 
our standard analysis tools and 
metrics
– Fourier transform, mean and power 

calculations, etc…
• When trying to analyze the 

ensemble (i.e. all trials) of 
possible outcomes, we find 
ourselves in need of new tools 
and metrics

n

n

n

noise[n]   (Trial 1)

noise[n]   (Trial 2)

noise[n]   (Trial 3)
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Tools and Metrics for Random Processes
• Assume that random processes we will deal with 

have the properties of being stationary and 
ergodic
– True for noise in many practical communication systems 
– Greatly simplifies analysis – 6.011 will provide details

• Examine in both time and frequency domains
– Time domain

• Introduce the concept of a probability density function (PDF) 
to characterize behavior of signals at a given sample time

• Use PDF to calculate mean and variance
– Similar to mean and power of non-random signals

– Frequency domain
• We must wait for 6.011 to give you the proper framework
• For now, we will simply use Fourier analysis on signals from 

individual trials as done in Labs
– We will give some hints of ensemble behavior …
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Stationary and Ergodic Random Processes
• Stationary

– Statistical behavior is 
independent of shifts in 
time in a given trial:

• Implies noise[k] is 
statistically 
indistinguishable     
from noise[k+N]

• Ergodic
– Statistical sampling

can be performed at  
one sample time (i.e., 
n=k) across different
trials, or across 
different sample times 
of the same trial with 
no change in the 
measured result

n

n

n

noise[n][trial=1]

noise[n][trial=2]

noise[n][trial=3]

n=k

noise[n=k][trial]

trial
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Examples
• Non-Stationary • Stationary, but Non-Ergodic
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n n
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noise[n]   (Trial 3)
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n

noise[n]  (Trial = 1)
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sample
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Experiment to see Statistical Distribution

• Create histograms of 
sample values from 
trials of increasing 
lengths

• Assumption of 
stationarity implies 
histogram should 
converge to a shape 
known as a probability 
density function (PDF)
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Formalizing the PDF Concept

• Define x as a 
random variable 
whose PDF has the 
same shape as the 
histogram we just 
obtained

• Denote PDF of x as 
fX(x)
– Scale fX(x) such that 

its overall area is 1

sample
value

x

fX(x)

Histogram

PDF

Area = 1

This shape is referred
to as a Gaussian PDF
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Formalizing Probability
• The probability that random variable x takes on a 

value in the range of x1 to x2 is calculated from 
the PDF of x as:

x

fX(x)
PDF

x1 x2

• Note that probability values are always in the 
range of 0 to 1
– Higher probability values imply greater likelihood that 

the event will occur
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Example Probability Calculation

• Verify that overall area is 1:

• Probability that x takes on a value between 0.5 
and 1.0:

x

fX(x)

0 2

1/2

0.5 1.0

This shape is 
referred to as 
a uniform PDF
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Examination of Sample Value Distribution

• Assumption of ergodicity implies the value 
occurring at a given time sample, noise[k], across 
many different trials has the same PDF as 
estimated in our previous experiment of many time 
samples and one trial

• We can model noise[k] as the random variable x

n

noise[n]

noise[k] = x

x

fX(x)
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Probability Calculation

• In a given trial, the probability that noise[k] takes 
on a value in the range of x1 to x2 is computed as

n

noise[n]

noise[k] = x

x2

x

fX(x)

x1

We will return to this when we analyze
performance of digital modulation systems
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Mean and Variance

• The mean of random variable x, μx, corresponds to 
its average value
– Computed as

• The variance of random variable x, σ2
x, gives an 

indication of its variability
– Computed as

– Similar to power of a signal

μx

x

fX(x)
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Visualizing Mean and Variance from PDF

• Changes in mean shift the center of mass of PDF
• Changes in variance narrow or broaden the PDF

– Note that area of PDF must always remain equal to one 
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Example Mean and Variance Calculation

• Mean:

• Variance:

x

fX(x)

0 2

1/2
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Frequency Domain View of Random Process
• It is valid to 

take fft of 
sequence from 
a given trial
– We did this in 

lab
• Notice that 

the fft result 
changes for 
different trials
– We saw this in 

the spectrum
plots of lab 3

– Fourier 
Transform is 
undefined !

n

n

n

noise[n]   (Trial 1)

noise[n]   (Trial 2)

noise[n]   (Trial 3)

λ

λ

λ

Magnitude of fft of noise[n]   (Trial 1)

Magnitude of fft of noise[n]   (Trial 2)
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Magnitude of fft of noise[n]   (Trial 3)
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White Noise

• When the fft result (i.e. spectrum) looks relatively 
flat, we refer to the random process as being 
white
– Note: this type of noise source is often used for 

calibration of advanced stereo systems

λ
-0.5 0 0.5

White Noise

Magnitude of fft of noise[n]
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Shaped Noise

• Shaped noise occurs when white noise is sent into a 
filter
– fft of shaped noise will have frequency content according 

to the type of filter
• Example:  highpass filter yields shaped noise with only high 

frequency content

λ
-0.5 0 0.5

White Noise

λ
-0.5 0 0.5

Shaped Noise

Magnitude of fft of noise[n] Magnitude of fft of filtered noise[n]

H(ej2πfλ)

Highpass
noise[n] filtered noise[n]
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Summary
• A useful metric characterizing the performance of 

communication systems is Signal-to-Noise Ratio
– High SNR values are desirable
– SNR often varies in a wireless system according to the 

distance between transmitter and receiver

• Analysis of random processes (such as noise) 
requires additional tools
– Concepts of stationarity and ergodicity
– Random variables and their associated PDF functions
– Metrics such as mean and variance

• Take 6.011 to learn more about random processes
– Proper framework for frequency domain analysis
– Advanced topics such as estimation
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