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Sampling
Continuous-Time

Signals
• Impulse train and its Fourier Transform 
• Impulse samples versus discrete-time sequences
• Aliasing and the Sampling Theorem
• Anti-alias filtering
• Comparison of FT, DTFT, Fourier Series
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The Need for Sampling

• The boundary between analog and digital
– Real world is filled with continuous-time signals
– Computers (i.e. Matlab) operate on sequences

• Crossing the analog-to-digital boundary requires 
sampling of the continuous-time signals

• Key questions
– How do we analyze the sampling process?
– What can go wrong?
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An Analytical Model for Sampling

• Two step process
– Sample continuous-time signal every T seconds

• Model as multiplication of signal with impulse train
– Create sequence from amplitude of scaled impulses

• Model as rescaling of time axis (T goes to 1)
• Notation:  replace impulses with stem symbols
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Can we model this in the frequency domain?
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Fourier Transform of Impulse Train

• Impulse train in time corresponds to impulse train 
in frequency
– Spacing in time of T seconds corresponds to spacing in 

frequency of 1/T Hz
– Scale factor of 1/T for impulses in frequency domain
– Note:  this is painful to derive, so we won’t …

• The above transform pair allows us to see the 
following with pictures
– Sampling operation in frequency domain
– Intuitive comparison of FT, DTFT, and Fourier Series
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Frequency Domain View of Sampling

• Recall that multiplication in time corresponds to 
convolution in frequency

• We see that sampling in time leads to a periodic
Fourier Transform with period 1/T
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Frequency Domain View of Output Sequence

• Scaling in time leads to scaling in frequency
– Compression/expansion in time leads to expansion/ 

compression in frequency
• Conversion to sequence amounts to T going to 1

– Resulting Fourier Transform is now periodic with period 1
– Note that we are now essentially dealing with the DTFT
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Summary of Sampling Process

• Sampling leads to periodicity in frequency domain

We need to avoid overlap of replicated 
signals in frequency domain (i.e., aliasing)
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• Overlap in frequency domain (i.e., aliasing) is 
avoided if:

The Sampling Theorem

• We refer to the minimum 1/T that avoids aliasing 
as the Nyquist sampling frequency
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Example: Sample a Sine Wave

• Time domain:  resulting sequence maintains the 
same period as the input continuous-time signal

• Frequency domain:  no aliasing
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Sample rate is well above Nyquist rate
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Increase Input Frequency Further …

• Time domain:  resulting sequence still maintains the 
same period as the input continuous-time signal

• Frequency domain:  no aliasing

Sample rate is at Nyquist rate
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Increase Input Frequency Further …

• Time domain:  resulting sequence now appears as a 
DC signal!

• Frequency domain:  aliasing to DC

Sample rate is at half the Nyquist rate
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Increase Input Frequency Further …

• Time domain:  resulting sequence is now a sine 
wave with a different period than the input

• Frequency domain:  aliasing to lower frequency

Sample rate is well below the Nyquist rate
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The Issue of High Frequency Noise

• We typically set the sample rate to be large 
enough to accommodate full bandwidth of signal

• Real systems often introduce noise or other 
interfering signals at higher frequencies
– Sampling causes this noise to alias into the desired 

signal band
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Anti-Alias Filtering

• Practical A-to-D converters include a continuous-
time filter before the sampling operation
– Designed to filter out all noise and interfering signals 

above 1/(2T) in frequency
– Prevents aliasing
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Using the Impulse Train to Compare 
the FT, DTFT, and Fourier Series
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Relationship Between FT and DTFT

FT

Continuous, Non-Periodic

Non-Periodic, Continuous

Discrete, Non-Periodic

Periodic,  Continuous

DTFT

Time:

Freq:
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Relationship Between FT and Fourier Series
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Fourier Series
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Summary
• The impulse train and its Fourier Transform form a 

very powerful analysis tool using pictures
– Sampling, comparison of FT, DTFT, Fourier Series

• Sampling analysis:
– Time domain:  multiplication by an impulse train followed by 

re-scaling of time axis (and conversion to stem symbols)
– Frequency domain:  convolution by an impulse train followed 

by re-scaling of frequency axis

• Prevention of aliasing
– Sample faster than Nyquist sample rate of signal bandwidth
– Use anti-alias filter to cut out high frequency noise

• Up next:  downsampling, upsampling, reconstruction
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