Analysis and Design of Analog Integrated Circuits Lecture 10

Frequency Response of Amplifiers

Michael H. Perrott
February 29, 2012
Copyright © 2012 by Michael H. Perrott All rights reserved.

Open Loop Versus Closed Loop Amplifier Topologies

Open Loop

Closed Loop

- Open loop - want all bandwidth limiting poles to be as high in frequency as possible
- Closed loop - want one pole to be dominant and all other parasitic poles to be as high in frequency as possible

OCT Method of Estimating Amplifier Bandwidth

- OCT method calculates $\sum_{i=0}^{n-1} \tau_{i}$ by the following steps:
- Compute the effective resistance $\mathrm{R}_{\mathrm{thj}}$ seen by each capacitor, C_{j}, with other caps as open circuits
- AC coupling caps are not included - considered as shorts
- Form the "open circuit" time constant $T_{j}=R_{t h j} C_{j}$ for each capacitor C_{j}
- Sum all of the "open circuit" time constants

$$
\Rightarrow B W \approx \frac{1}{\sum_{j=1}^{m} R_{t h j} C_{j}} \mathrm{rad} / \mathrm{s}
$$

Another Useful Analysis Tool: Miller Effect

- Derive input impedance (assume gain of amplifier =A):

$$
Z_{i n}=\frac{V_{\text {in }}}{i_{\text {in }}}=\frac{V_{\text {in }}}{\left(V_{\text {in }}-V_{\text {out }}\right) / Z_{f}}=\frac{V_{\text {in }} Z_{f}}{V_{\text {in }}-A V_{i n}}=\frac{Z_{f}}{1-A}
$$

- Consider the case where Z_{f} is a capacitor

$$
Z_{f}=\frac{1}{s C} \Rightarrow Z_{i n}=\frac{1}{s(1-A) C}
$$

- For negative A, input impedance sees increased cap value
- For $A=1$, input impedance sees no influence from cap
- For $A>1$, input impedance sees negative capacitance!
- Can be used to create active inductor for a specific frequency

Key Capacitances for CMOS Devices

CMOS Hybrid- π Model with Caps (Device in Saturation)

$$
\begin{array}{ll}
C_{g s}=C_{g c}+C_{o v}=\frac{2}{3} C_{o x} W\left(L-2 L_{D}\right)+C_{o v} \\
C_{g d}=C_{o v} & \\
C_{\mathrm{sb}}=C_{j s b} & \text { (area + perimeter junction capacitance) } \\
C_{d b}=C_{j d b} & \text { (area + perimeter junction capacitance) }
\end{array}
$$

OCT Thevenin Resistance Calculations

- C_{gs} : Thevenin resistance between gate and source

$$
R_{t h_{g s}}=\frac{R_{S}\left(1+R_{D} / r_{o}\right)+R_{G}\left(1+\left(g_{m b}+1 / r_{o}\right) R_{S}+R_{D} / r_{o}\right)}{1+\left(g_{m}+g_{m b}\right) R_{S}+\left(R_{S}+R_{D}\right) / r_{o}}
$$

- C_{gd} : Thevenin resistance between gate and drain

$$
\begin{aligned}
& R_{t h_{g d}}=\left(R_{D}+R_{G}\right)\left(1-r_{o d s} / r_{o}\right)+r_{o d s} g_{m} R_{G} \\
& \text { where } r_{o d s}=r_{o} \| \frac{R_{D}}{1+\left(g_{m}+g_{m b}\right) R_{S}}
\end{aligned}
$$

OCT Example: Design Wide Bandwidth Amplifier

Assumptions:

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{m}}=1 /(100 \Omega), \gamma=0, \lambda=0 \\
& \mathrm{C}_{\mathrm{gs}}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF} \\
& \mathrm{C}_{\mathrm{sb}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{db}}=4 \mathrm{fF} \\
& \mathrm{R}_{\mathrm{in}}=4 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=100 \mathrm{fF}
\end{aligned}
$$

- Step 1: identify AC coupling versus OCT capacitors
- AC coupling caps will be regarded as shorts
- Step 2: calculate individual OCT time constants
- Step 3: identify long OCT time constants and modify circuit to improve its bandwidth

Step 1: Identify OCT Capacitors

Assumptions:

$$
\overline{g_{m}=1 /(100 \Omega)}, \gamma=0, \lambda=0
$$

$$
C_{g s}=10 f F, C_{g d}=3 f F
$$

$$
C_{s b}=5 f F, C_{d b}=4 f F
$$

$$
\mathrm{R}_{\mathrm{in}}=4 \mathrm{k} \Omega
$$

$$
\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega
$$

$C_{L}=100 f F$

- Which time constants are easy to calculate?
- How do we efficiently calculate the more difficult cases?

Step 2: OCT Time Constant Calculations

Assumptions:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$C_{g s}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$
$\mathrm{C}_{\mathrm{sb}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{db}}=4 \mathrm{fF}$
$R_{\text {in }}=4 k \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

- Easy ones:

$$
\begin{aligned}
& R_{t h 1}=R_{L}\left\|R_{t h_{d}}=R_{L}\right\| \infty=R_{L}=1 k \Omega \Rightarrow \tau_{1}=1 k \Omega \cdot 104 \mathrm{fF}=104 p s \\
& R_{t h 2}=R_{\text {in }}\left\|R_{t h_{g}}=R_{\text {in }}\right\| \infty=R_{\text {in }}=4 k \Omega \Rightarrow \tau_{2}=4 k \Omega \cdot 10 \mathrm{fF}=40 \mathrm{ps}
\end{aligned}
$$

- Use formula for $\tau_{3}: \quad R_{t h_{a d}}=\left(R_{D}+R_{G}\right)\left(1-r_{o d s} / r_{o}\right)+r_{o d s} g_{m} R_{G}$

$$
\text { where } r_{o d s}=r_{o} \| \frac{R_{D}}{1+\left(g_{m}+g_{m b}\right) R_{S}}=R_{D}=R_{L}
$$

$$
\Rightarrow R_{t h 3}=\left(R_{L}+R_{i n}\right)(1-0)+R_{L} g_{m} R_{i n}=5.5 k \Omega+40 k \Omega=45.5 k \Omega
$$

$$
\Rightarrow \tau_{3}=45.5 \mathrm{k} \Omega \cdot 3 \mathrm{fF}=136.5 \mathrm{ps}
$$

Step 3: Identify Largest OCT Time Constant

Assumptions:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$\mathrm{C}_{\mathrm{gs}}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$
$\mathrm{C}_{\mathrm{sb}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{db}}=4 \mathrm{fF}$
$R_{\text {in }}=4 \mathrm{k} \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

- Time constant associated with C_{gd} is the longest:

$$
\tau_{3}=45.5 k \Omega \cdot 3 f F=136.5 p s
$$

- Why is this time constant so large given that it is associated with the lowest value capacitor?
- How do we change the amplifier topology to reduce this time constant value?

The Miller Effect Analysis Provides Helpful Intuition

- Notice that C_{gd} is in the feedback path of the common source amplifier
- Recall Miller effect calculation: $\quad C_{i n}=(1-A) C_{g d}$
- For this amplifier:

$$
\begin{aligned}
& A=-g_{m} R_{L} \Rightarrow C_{i n}=\left(1+g_{m} R_{L}\right) C_{g d}=11 \cdot C_{g d}=33 f F \\
& \Rightarrow \tau_{3}=R_{i n} C_{i n}=4 k \Omega \cdot 33 f F=132 p s
\end{aligned}
$$

- This analysis agrees well with OCT calculation of 136.5ps

Can we change the amplifier topology to lower this time constant?

Consider Adding a Cascode Device

- Examine the impact of this topological change using the Miller Effect analysis

$$
\begin{aligned}
& A=-g_{m 1} \frac{1}{g_{m 2}} \approx-1 \Rightarrow C_{i n}=(1+1) C_{g d 1}=2 \cdot C_{g d 1}=6 f F \\
& \Rightarrow \tau_{3}=R_{i n} C_{i n}=4 k \Omega \cdot 6 f F=24 p s
\end{aligned}
$$

Cascode device dramatically reduces the $\mathrm{C}_{\mathrm{gd1} 1}$ time constant!

Does the Miller Effect Impact the Cascode Device?

- Observe that the capacitance seen by $\mathrm{V}_{\text {bias }}$ is not of concern since this voltage is not part of the signal path
- The signal path sees the time constant:

$$
\tau_{4}=R_{L} \| R_{t h_{d 2}} \cdot C_{g d 2} \approx R_{L} \cdot C_{g d 2}=1 k \Omega \cdot 3 f F=3 p s
$$

- This time constant is much smaller than the other time constants of the amplifier

Perform OCT Calculations for Updated Amplifier

Assumptions for all devices:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$\mathrm{C}_{\mathrm{gs}}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$ $C_{s b}=5 f F, C_{d b}=4 f F$
$R_{\text {in }}=4 \mathrm{k} \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

$$
\begin{aligned}
& R_{t h 1}=R_{L} \| R_{t h_{d 2}}=R_{L}=1 k \Omega \Rightarrow \tau_{1}=1 k \Omega \cdot 104 f F=104 p s \\
& R_{t h 2}=R_{i n} \| R_{t h_{g 1}}=R_{i n}=4 k \Omega \Rightarrow \tau_{2}=4 k \Omega \cdot 10 f F=40 p s \\
& R_{t h 4}=R_{L} \| R_{t h_{d 2}} \approx R_{L}=1 k \Omega \Rightarrow \tau_{3}=1 k \Omega \cdot 3 f F=3 p s \\
& R_{t h 5}=R_{t h_{s 2}}\left\|R_{t h_{d 1}} \approx 1 / g_{m 2}\right\| \infty=100 \Omega \Rightarrow \tau_{5}=100 \Omega \cdot 10 f F=1 p s \\
& R_{t h 6}=R_{t h_{d 1}}\left\|R_{t h_{s 2}}=\infty\right\| 1 / g_{m 2}=100 \Omega \Rightarrow \tau_{6}=100 \Omega \cdot 9 f F=0.9 p s
\end{aligned}
$$

Perform OCT Calculations for Updated Amplifier

Assumptions for all devices:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$\mathrm{C}_{\mathrm{gs}}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$
$\mathrm{C}_{\mathrm{sb}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{db}}=4 \mathrm{fF}$
$R_{\text {in }}=4 \mathrm{k} \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

- Use Thevenin formula for C_{gd} calculation:

$$
\begin{aligned}
& R_{t h 3}=\left(R_{D 1}+R_{G 1}\right)\left(1-r_{o d s} / r_{o 1}\right)+r_{o d s} g_{m 1} R_{G 1} \\
& \quad \text { where } r_{o d s}=r_{o 1} \| \frac{R_{D 1}}{1+\left(g_{m 1}+g_{m b 1}\right) R_{S 1}} \\
& \Rightarrow R_{t h 3}=\left(\frac{1}{g_{m 2}}+R_{\text {in }}\right)(1-0)+\frac{1}{g_{m 2}} g_{m 1} R_{i n}=4.1 \mathrm{k} \Omega+4 k \Omega=8.1 \mathrm{k} \Omega \\
& \Rightarrow \tau_{3}=8.1 \mathrm{k} \Omega \cdot 3 \mathrm{fF}=24.3 \mathrm{ps}
\end{aligned}
$$

Identify Longest OCT Time Constant

Assumptions for all devices:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$C_{g s}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$
$C_{s b}=5 f F, C_{d b}=4 f F$
$R_{\text {in }}=4 \mathrm{k} \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

- The load capacitance now presents the largest time constant:

$$
R_{t h 1}=R_{L} \| R_{t h_{d 2}}=R_{L}=1 k \Omega \Rightarrow \tau_{1}=1 k \Omega \cdot 104 f F=104 p s
$$

Can we change the amplifier topology to lower this time constant?

Add a Source Follower to the Output

For all devices:
$g_{m}=1 /(100 \Omega), \gamma=0, \lambda=0$
$C_{\text {gs }}=10 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=3 \mathrm{fF}$
$C_{s b}=5 f F, C_{d b}=4 f F$
$R_{\text {in }}=4 k \Omega$
$R_{L}=1 \mathrm{k} \Omega$
$C_{L}=100 f F$

- Key idea: reduce the time constant associated with C_{L} by decreasing the Thevenin resistance that it sees
- Previous design presented $R_{L}=1 K \Omega$ to C_{L}
- Source follower presents $R_{\text {ths } 3}=1 / g_{m 3}=100 \Omega$ to C_{L}

Source follower should reduce C_{L} time constant by a factor of ten!

Calculation of New C_{L} Time Constant

- Formal calculation:

$$
R_{t h 1}=R_{t h_{s 3}}=1 / g_{m 3}=100 \Omega \Rightarrow \tau_{1}=100 \Omega \cdot 104 \mathrm{fF}=10.4 p s
$$

How large are the additional time constants created by M_{3} ?

Calculation of Additional Time Constants from M_{3}

Estimate Bandwidth Based on OCT Calculations

Summary

- Two techniques prove very useful when designing amplifiers for desired frequency response behavior
- Open Circuit Time Constant method
- Miller Effect analysis
- Thevenin resistance analysis in combination with the above offers tremendous insight for designing amplifier topologies
- OCT method allows quick discovery of large time constants
- Miller effect provides intuition of the impact of placing capacitors within feedback
- Awareness of impedances presented by various amplifier stages allows intuitive approach to achieve reduction of large time constants

