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Open Loop Versus Closed Loop Amplifier Topologies

 Open loop – want all bandwidth limiting poles to be as 
high in frequency as possible

 Closed loop – want one pole to be dominant and all other 
parasitic poles to be as high in frequency as possible
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OCT Method of Estimating Amplifier Bandwidth

 OCT method calculates by the following steps:
- Compute the effective resistance Rthj seen by each 

capacitor, Cj, with other caps as open circuits
 AC coupling caps are not included – considered as shorts

- Form the “open circuit” time constant Tj = RthjCj for each 
capacitor Cj- Sum all of the “open circuit” time constants 
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Another Useful Analysis Tool:  Miller Effect

 Derive input impedance (assume gain of amplifier = A):

 Consider the case where Zf is a capacitor

- For negative A, input impedance sees increased cap value
- For A = 1, input impedance sees no influence from cap
- For A > 1, input impedance sees negative capacitance!

 Can be used to create active inductor for a specific frequency
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Key Capacitances for CMOS Devices
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CMOS Hybrid- Model with Caps (Device in Saturation)
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Cgd = Cov

Csb = Cjsb (area + perimeter junction capacitance)

Cdb = Cjdb (area + perimeter junction capacitance)
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OCT Thevenin Resistance Calculations

 Cgs:  Thevenin resistance between gate and source

 Cgd:  Thevenin resistance between gate and drain
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OCT Example:  Design Wide Bandwidth Amplifier

 Step 1:  identify AC coupling versus OCT capacitors
- AC coupling caps will be regarded as shorts

 Step 2:  calculate individual OCT time constants
 Step 3:  identify long OCT time constants and modify 

circuit to improve its bandwidth
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Assumptions:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF
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Step 1:  Identify OCT Capacitors

 Which time constants are easy to calculate?
 How do we efficiently calculate the more difficult 

cases?
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Assumptions:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
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RL = 1k
CL = 100fF
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Step 2:  OCT Time Constant Calculations
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Rth1 (CL+Cdb)
Rth2 (Cgs)

Rth3 (Cgd)

Assumptions:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

 Easy ones:

 Use formula for 3:

Rth1 = RL||Rthd = RL||∞ = RL = 1kΩ ⇒ τ1 = 1kΩ · 104fF = 104ps

Rth2 = Rin ||Rthg = Rin ||∞ = Rin = 4kΩ ⇒ τ2 = 4kΩ · 10fF = 40ps

Rthgd = (RD +RG)(1− rods/ro) + rodsgmRG
where rods = ro||

RD
1 + (gm + gmb)RS

= RD = RL

⇒ Rth3 = (RL +Rin)(1− 0) +RLgmRin = 5.5kΩ + 40kΩ = 45.5kΩ
⇒ τ3 = 45.5kΩ · 3fF = 136.5ps
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Step 3:  Identify Largest OCT Time Constant
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Assumptions:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

 Time constant associated with Cgd is the longest:

 Why is this time constant so large given that it is 
associated with the lowest value capacitor?

 How do we change the amplifier topology to reduce 
this time constant value?

τ3 = 45.5kΩ · 3fF = 136.5ps
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The Miller Effect Analysis Provides Helpful Intuition

 Notice that Cgd is in the feedback path of the common 
source amplifier
- Recall Miller effect calculation:  
- For this amplifier:

 This analysis agrees well with OCT calculation of 136.5ps
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A = −gmRL ⇒ Cin = (1 + gmRL)Cgd = 11 · Cgd = 33fF

Cin = (1−A)Cgd

⇒ τ3 = RinCin = 4kΩ · 33fF = 132ps

Can we change the amplifier topology to lower this time constant?
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Consider Adding a Cascode Device

 Examine the impact of this topological change using 
the Miller Effect analysis

13

Rin

RL

Vin

Vout

Cin

Cgd1

Vbias

M1

M2

A = −gm1
1

gm2
≈ −1 ⇒ Cin = (1 + 1)Cgd1 = 2 · Cgd1 = 6fF

⇒ τ3 = RinCin = 4kΩ · 6fF = 24ps

Cascode device dramatically reduces the Cgd1 time constant!
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Does the Miller Effect Impact the Cascode Device?

 Observe that the capacitance seen by Vbias is not of 
concern since this voltage is not part of the signal path

 The signal path sees the time constant:

- This time constant is much smaller than the other time 
constants of the amplifier

14

Rin

RL

Vin

Vout
Cgd2

Vbias

M1

M2

τ4 = RL||Rthd2 · Cgd2 ≈ RL · Cgd2 = 1kΩ · 3fF = 3ps
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Perform OCT Calculations for Updated Amplifier
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Rth4 (Cgd2)

Rin

RL

Vin

Vout

Vbias

M1

M2

Rth1 (CL+Cdb2)

Rth2 (Cgs1)

Rth3 (Cgd1)

Rth5 (Cgs2)

Rth6 (Cds1+Csb2)

Rth1 = RL||Rthd2 = RL = 1kΩ ⇒ τ1 = 1kΩ · 104fF = 104ps

Rth2 = Rin ||Rthg1 = Rin = 4kΩ ⇒ τ2 = 4kΩ · 10fF = 40ps

Rth5 = Rths2 ||Rthd1 ≈ 1/gm2||∞ = 100Ω ⇒ τ5 = 100Ω · 10fF = 1ps
Rth4 = RL||Rthd2 ≈ RL = 1kΩ ⇒ τ3 = 1kΩ · 3fF = 3ps

Assumptions for all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

Rth6 = Rthd1 ||Rths2 =∞||1/gm2 = 100Ω ⇒ τ6 = 100Ω · 9fF = 0.9ps
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Perform OCT Calculations for Updated Amplifier

 Use Thevenin formula for Cgd calculation:
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Rth2 (Cgs1)

Rth3 (Cgd1)

Rth5 (Cgs2)

Rth6 (Cds1+Csb2)

Assumptions for all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

Rth3 = (RD1 +RG1)(1− rods/ro1) + rodsgm1RG1

⇒ Rth3 = (
1

gm2
+Rin)(1− 0) +

1

gm2
gm1Rin = 4.1kΩ+ 4kΩ = 8.1kΩ

⇒ τ3 = 8.1kΩ · 3fF = 24.3ps

where rods = ro1||
RD1

1 + (gm1 + gmb1 )RS1
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Identify Longest OCT Time Constant

 The load capacitance now presents the largest time 
constant:
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Rth1 (CL+Cdb2)

Rth2 (Cgs1)

Rth3 (Cgd1)

Rth5 (Cgs2)

Rth6 (Cds1+Csb2)

Assumptions for all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

Rth1 = RL||Rthd2 = RL = 1kΩ ⇒ τ1 = 1kΩ · 104fF = 104ps

Can we change the amplifier topology to lower this time constant?
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Add a Source Follower to the Output

 Key idea:  reduce the time constant associated with 
CL by decreasing the Thevenin resistance that it sees
- Previous design presented RL = 1K to CL- Source follower presents Rths3 = 1/gm3 = 100 to CL
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Vbias
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M2

M3

Ibias CL

For all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

Source follower should reduce CL time constant by a factor of ten!
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Calculation of New CL Time Constant

 Formal calculation:
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Rth2 (Cgs1)

Rth3 (Cgd1)

Rth5 (Cgs2)

M3

Ibias

Rth8 (Cgd3)

Rth7 (Cgs3)

Rth6
(Cds1+Csb2)

For all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

How large are the additional time constants created by M3?

Rth1 = Rths3 = 1/gm3 = 100Ω ⇒ τ1 = 100Ω · 104fF = 10.4ps
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Calculation of Additional Time Constants from M3
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Rth8 (Cgd3)
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For all devices:
gm = 1/(100),  = 0,  = 0
Cgs = 10fF, Cgd = 3fF
Csb = 5fF, Cdb = 4fF
Rin = 4k
RL = 1k
CL = 100fF

Rth8 = RL||Rthd2 ≈ RL = 1kΩ ⇒ τ8 = 1kΩ · 3fF = 3ps

⇒ τ7 = 100Ω · 10fF = 1ps

Rth7 =
RS3(1 +RD3/ro3) +RG3(1 + (gmb3 + 1/ro3)RS3 +RD3/ro3)

1 + (gm3 + gmb3 )RS3 + (RS3 +RD3)/ro3

⇒ Rth7 =
1 + RD3/ro3 +RG3(gmb3 + 1/ro3)

gm3 + gmb3 + 1/ro3
=

1 + 0 + 0

gm3 + 0 + 0
= 100Ω
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Estimate Bandwidth Based on OCT Calculations
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τ1 = 10.4ps

τ2 = 40ps

τ3 = 24.3ps

τ4 = 3ps

τ5 = 1ps

τ6 = 0.9ps

τ7 = 1ps

τ8 = 3ps

BW ≈ 1Pm
j=1RthjCj

=
1

83.6ps
= 11.96 Grad/s

⇒ BW ≈ 11.96

2π
= 1.9GHz
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Summary

 Two techniques prove very useful when designing 
amplifiers for desired frequency response behavior
- Open Circuit Time Constant  method
- Miller Effect analysis

 Thevenin resistance analysis in combination with the 
above offers tremendous insight for designing 
amplifier topologies
- OCT method allows quick discovery of large time 

constants
- Miller effect provides intuition of the impact of placing 

capacitors within feedback
- Awareness of impedances presented by various 

amplifier stages allows intuitive approach to achieve 
reduction of large time constants
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