Analysis and Design of Analog Integrated Circuits Lecture 19

Advanced Opamp Topologies

Michael H. Perrott April 11, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Opamps Are Utilized in a Wide Range of Applications

Each application comes with different opamp requirements

- How are the input common-mode range requirements different among the above applications?
- How are the output range requirements different?
- How are the bandwidth requirements different?

Integrated opamps are typically custom designed for their specific application

Single-Ended Versus Fully Differential Topologies

- Analog circuits are sensitive to noise from the power supply and other coupling mechanisms
- Fully differential topologies can offer rejection of common-mode noise (such as from supplies)
 - Information is encoded as the difference between two signals
 - More complex implementation than single-ended designs

Key Focus of Lecture

- Examine fully differential version of basic two stage opamp
- Examine more advanced opamp topologies and the advantages/disadvantages they present

Fully Differential Version of Basic Two Stage Opamp

We can separate this into differential and common mode circuits, similar to a single differential amplifier

- Differential behavior same as the single-ended opamp
 - Note that we have twice the effective range in input/output swing due to the differential signaling
- Common mode setting needs to be dealt with

Illustration of Common Mode Influence

- Maximum swing for fully differential signals requires
 - Accurate setting of the common mode value
 - Suppression of common mode noise

Common-Mode Gain From Input

Analysis is same as for single-ended design

Can be simplified to common-mode "half-circuit"

$$a_{vc} = \frac{r_{o4}}{1/g_{m2} + 2r_{o5}} g_{m6a} \left(r_{o6a} || r_{o7a} \right)$$

Common-mode output is sensitive to common-mode input

Common-Mode Gain From Input Bias

Common mode "half circuit can still be used

 $a_{vbias} \approx (g_{m4}r_{o4}) g_{m6a} (r_{o6a} || r_{o7a})$

Common-mode output is extremely sensitive to V_{bias}!

Common Mode Feedback Biasing (CMFB)

- Use an auxiliary circuit to accurately set the common mode output value to a controlled value Vref
 - Need to be careful not to load the outputs with the common mode sensing circuit (R_{large} in this case)
 - Need to design CMFB to be stable

Parasitic Pole/Zero Pair of Current Mirrors

Single-ended signal travels through current mirror

Introduces an extra parasitic pole/zero

$$w_{p_par} = \frac{g_{m3}}{C_{gs3} + C_{gs4}}$$

$$w_{z_par} = 2w_{p_par}$$

Fully differential signal does not see this pole/zero pair

Closer Examination of Pole/Zero Relationship

Note that signal at V₂ is composed of the sum of paths (a) and (b) shown above

$$\frac{i_{sc}(s)}{v_{id}(s)} = \frac{g_m}{2} + \left(\frac{g_m}{2}\right) \frac{1}{1 + s/w_{p_par}}$$
$$= \left(\frac{g_m}{2}\right) \frac{2 + s/w_{p_par}}{1 + s/w_{p_par}} = g_m \frac{1 + s/(2w_{p_par})}{1 + s/w_{p_par}}$$

Summary of Single-Ended Versus Fully Differential

Advantages of fully differential topologies

- Improved CMRR and PSRR across a wide frequency range
- Twice the effective signal swing
- Removal of pole/zero pair due to current mirror
 - Potentially improved phase margin
- Disadvantages of fully differential topologies
 - Power and complexity

Most opamp topologies can be modified to support either single-ended or fully differential signaling

Telescopic Opamp (Fully Differential Version)

- Popular for high frequency applications
 - Single stage design
 - Limitation: input and output swing quite limited

Open Loop Response of Telescopic Opamp

Why is this topology good for high bandwidth applications?

Open Loop Response of Telescopic Opamp

Notice that parasitic pole is much higher than for two stage opamp, yielding higher potential unity gain BW M.H. Perrott

Telescopic Opamp (Single-Ended Version)

Issue: parasitic pole lower than fully differential version

$$w_{p2} \approx \frac{g_{m7}}{C_{gs7} + C_{gs8} + C_{d3,d5}} < w_{p1} \approx \frac{g_{m4}}{C_{gs4} + C_{s4,d2}}$$

Singled-ended version not as useful for wide bandwidth *M.H. Perrott*

Folded Cascode Opamp

- Modified version of telescopic opamp
 - Significantly improved input/output swing
 - High BW (better than two stage, worse than telescopic)
 - Single stage of gain (lower than telescopic)

Open Loop Response of Folded Cascode Opamp

Two Stage with Cascoded Output Stage

Higher DC gain than with two stage or folded cascode

- Two gain stages with boosted gain on the output stage
- Same output swing as folded cascode
 - Lower than for basic two stage

Open Loop Response Calculations

Two Stage with Cascoded Input Stage

- Compared to two stage with cascoded output
 - Similar DC gain
 - Improved output swing
 - Reduced input swing

Open Loop Response Calculations

Summary

- Opamp topologies can be configured to process fully differential signals
 - Provides improved immunity to noise from common-mode perturbations such as power supply noise
 - Increases effective signal swing by a factor of two
 - Carries additional complexity for CMFB and increased power consumption
- Integrated opamps are often custom designed for a given application
 - Each application places different demands on DC gain, bandwidth, signal swing, etc.
 - Opamp topologies considered today include telescopic, folded cascode, and modified two stage
 - Each carries different tradeoffs on the above specifications