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Opamps Are Utilized in a Wide Range of Applications

 Each application comes with different opamp requirements
- How are the input  common-mode range requirements  

different among the above applications?
- How are the output range requirements different?
- How are the bandwidth requirements different?
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Single-Ended Versus Fully Differential Topologies

 Analog circuits are sensitive to noise from the power 
supply and other coupling mechanisms

 Fully differential topologies can offer rejection of 
common-mode noise (such as from supplies)
- Information is encoded as the difference between two 

signals
- More complex implementation than single-ended 

designs
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Key Focus of Lecture

 Examine fully differential version of basic two stage 
opamp

 Examine more advanced opamp topologies and the 
advantages/disadvantages they present
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Fully Differential Version of Basic Two Stage Opamp

 We can separate this into differential and common 
mode circuits, similar to a single differential amplifier
- Differential behavior same as the single-ended opamp

 Note that we have twice the effective range in 
input/output swing due to the differential signaling

- Common mode setting needs to be dealt with
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Illustration of Common Mode Influence

 Maximum swing for fully differential signals requires
- Accurate setting of the common mode value
- Suppression of common mode noise
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Common-Mode Gain From Input

 Analysis is same as for single-ended design
- Can be simplified to common-mode “half-circuit” 

- Common-mode output is sensitive to common-mode input
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Common-Mode Gain From Input Bias

 Common mode “half circuit can still be used

- Common-mode output is extremely sensitive to Vbias!
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Common Mode Feedback Biasing (CMFB)

 Use an auxiliary circuit to accurately set the common 
mode output value to a controlled value Vref
- Need to be careful not to load the outputs with the 

common mode sensing circuit (Rlarge in this case)
- Need to design CMFB to be stable
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Parasitic Pole/Zero Pair of Current Mirrors

 Single-ended signal travels through current mirror
- Introduces an extra parasitic pole/zero 

 Fully differential signal does not see this pole/zero pair
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Closer Examination of Pole/Zero Relationship

 Note that signal at V2 is composed of the sum of 
paths (a) and (b) shown above
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Summary of Single-Ended Versus Fully Differential

 Advantages of fully differential topologies
- Improved CMRR and PSRR across a wide frequency range
- Twice the effective signal swing
- Removal of pole/zero pair due to current mirror 

 Potentially improved phase margin
 Disadvantages of fully differential topologies

- Power and complexity
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Telescopic Opamp (Fully Differential Version)

 Popular for high frequency applications
- Single stage design
- Limitation:   input and output swing quite limited
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Open Loop Response of Telescopic Opamp

 Determine K, wdom, wo, wp
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Open Loop Response of Telescopic Opamp

 Notice that parasitic pole is much higher than for two 
stage opamp, yielding higher potential unity gain BW
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Telescopic Opamp (Single-Ended Version)

 Issue:  parasitic pole lower than fully differential 
version

- Singled-ended version not as useful for wide bandwidth
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Folded Cascode Opamp

 Modified version of telescopic opamp
- Significantly improved input/output swing
- High BW (better than two stage, worse than telescopic)
- Single stage of gain (lower than telescopic)
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Open Loop Response of Folded Cascode Opamp
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Two Stage with Cascoded Output Stage

 Higher DC gain than with two stage or folded cascode
- Two gain stages with boosted gain on the output stage

 Same output swing as folded cascode
- Lower than for basic two stage
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Open Loop Response Calculations
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Two Stage with Cascoded Input Stage

 Compared to two stage with cascoded output
- Similar DC gain
- Improved output swing
- Reduced input swing
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Open Loop Response Calculations
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Summary

 Opamp topologies can be configured to process fully 
differential signals
- Provides improved immunity to noise from common-mode 

perturbations such as power supply noise
- Increases effective signal swing by a factor of two
- Carries additional complexity for CMFB and increased 

power consumption
 Integrated opamps are often custom designed for a 

given application
- Each application places different demands on DC gain, 

bandwidth, signal swing, etc.
- Opamp topologies considered today include telescopic, 

folded cascode, and modified two stage
 Each carries different tradeoffs on the above specifications


