Analysis and Design of Analog Integrated Circuits Lecture 20

Advanced Opamp Topologies (Part II)

Michael H. Perrott April 15, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

M.H. Perrott

Outline of Lecture

- Gain boosting technique
- Nested Miller technique
- Replica bias technique
- Improved slew rate opamp example

Recall the Folded Cascode Opamp

Modified version of telescopic opamp

- Significantly improved input/output swing
- High BW (better than two stage, worse than telescopic)
- Single stage of gain (lower than telescopic)

Can we further boost the DC gain?

Gain Boosting of Current Sources

We can achieve increased output impedance of a current source with an amplifier

The amplifier essentially increases g_{m1} by factor K

$$R_{out} = (Kg_{m1}r_{o1}) R_{ref}$$

Key issue: what is a convenient implementation of the above circuit?
M H Perrott

A Simple Gain Boosting Amplifier

Common source amplifier utilized

$$K = g_{m4}r_{o4}, R_{ref} = r_{o2}$$

$$\Rightarrow R_{out} = (g_{m4}r_{o4}) (g_{m1}r_{o1}) r_{o2} \approx (g_m r_o)^2 r_{o2}$$

Issue: current source requires significant headroom due to the fact that V_{ds2} = V_{gs4}

Folded Cascode Gain Boosting Amplifier

Folded cascode yields

$$K = g_{m4} \left(\left((g_{m6}r_{o6})r_{o5} \right) || \left((g_{m7}r_{o7})r_{o8} \right) \right)$$

$$\Rightarrow R_{out} \approx (g_m r_o)^3 r_{o2}$$

Improved headroom and higher gain!

Is there a convenient way to set V_{bias5}?

M.H. Perrott

Differential Version of Gain Boosting Amplifier

- Leverage fully differential nature of current sources within the opamp
 - PMOS gain devices are now part of a differential pair
 - Need CMFB to set common-mode gate voltages of M₁ and M₂

Symbolic View of Folded Cascode Gain Boosting Amp

We can apply this to the overall folded cascode opamp

Folded Cascode with Gain Boosting

- Gain boosting provides substantial increase of DC gain while maintaining good input and output swing
 - Gain is on the order of (g_mr_o)⁴
- Issue very complex!

Recall Pole Splitting for Two Stage Compensation

- Moves the dominant pole of the second stage to higher frequencies such that it becomes a parasitic pole
- Places the first stage pole as the dominant pole
 - Leverages the gain of the second stage to achieve capacitor multiplication using the Miller effect

Can we extend the pole splitting technique to more than 2 gain stages?

Nested Miller Compensation

- Advantage: increased DC gain with high input and output swing
- Issue: more parasitic poles to deal with
 - Leads to lower unity gain bandwidth for reasonable phase margin

Proving to be a useful technique in advanced CMOS processes which offer fast speed (high g_m/C) but low intrinsic gain (low $g_m r_o$)

Nested Miller Example

- Intermediate gain stages must be non-inverting in order to achieve stable feedback
- Compensation resistors should also be included to eliminate the impact of RHP zeros
 - Not shown for simplicity

Recall the Telescopic Opamp

Key issue is input swing

Can we improve this?

Replica Bias Technique

Allows current source to maintain its output current even for low V_{ds} using dynamic bias of V_{gs}

Allows extended input common-mode range

Recall: Slew Rate Issues for Opamps

Output currents of practical opamps have max limits

- Impacts maximum rate of charging or discharging load capacitance, C_L
- For large step response, this leads to the output lagging behind the ideal response based on linear modeling
 - We refer to this condition as being slew-rate limited
- Where slew-rate is of concern, the output stage of the opamp can be designed to help mitigate this issue
 - Will lead to extra complexity and perhaps other issues

Key Observations for Slew Rate Calculations

Class A and AB Amplifiers/Buffers

- Class A
 - Maximum slew rate in one direction is set by the nominal bias current
- Class AB
 - Maximum slew rate is not set by the nominal bias current
 - Goal: low nominal bias current

Class AB Opamp

- Low bias current can be achieved for V_{in+} = V_{in-}
 - Must properly set V_{bias}
- Much higher current when V_{in+} ≠ V_{in-}
- DC gain can be increased through cascoding of output stage M.H. Perrott

Biasing Network for Class AB Opamp

- Bias current set by
 - Ratio of device sizes of M₁-M₄ versus M₁₃-M₁₆
 - I_{ref} current

Summary

- Opamps invite a wide variety of techniques to address different application requirements
 - Cleverness can substantially improve performance and robustness
 - Changing of CMOS processes over time leads to new techniques which were previously unnecessary or unpractical
- Four techniques discussed today
 - Gain boosting
 - Nested Miller
 - Replica bias
 - Class AB stages