Analysis and Design of Analog Integrated Circuits Lecture 7

Differential Amplifiers

Michael H. Perrott February 12, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Review Proposed Thevenin CMOS Transistor Model

Key Observations

- For calculations focusing on signal flow from gate or source to the drain
 - Observe that current through R_d equals i_s
 - True since $\alpha * R_{thd}/(R_d + R_{thd}) = 1$
 - You can avoid doing calculations involving α or ${\rm R}_{\rm thd}$
- For calculations focusing on signal flow from the drain
 - Drain simply looks like impedance R_{thd}

Basic Single-Stage Amplifiers and Current Mirrors

Vout

lout

I_d

lin

Source Follower

Today We Will Look At Differential Amplifiers

Differential and Common Mode Signals

- Consider positive and negative input terminal signals V_i⁺ and V_i⁻
- Define differential signal as: $V_{id} = V_{in}^+ V_{in}^-$
- Define common mode signal as: $V_{ic} = (V_{in}^+ + V_{in}^-)/2$
- We can create arbitrary V_i⁺ and V_i⁻ signals from differential and common mode components:

$$V_{in}^+ = V_{ic} + \frac{1}{2}V_{id}$$
 $V_{in}^- = V_{ic} - \frac{1}{2}V_{id}$

This also applies to differential output signals:

$$V_o^+ = V_{oc} + \frac{1}{2}V_{od}$$
 $V_o^- = V_{oc} - \frac{1}{2}V_{od}$

Differential Amplifier

- Useful for amplifying signals in the presence of noise
 - Common-mode noise is rejected
- Useful for high speed digital circuits
 - Low voltage swing allows faster gate/buffer performance

First Steps in Small Signal Modeling

- Small signal analysis assumes linearity
 - Impact of M₄ on amplifier is to simply present its drain impedance to the diff pair transistors (M₁ and M₂)
 - Impact of V_{in+} and V_{in-} can be evaluated separately and then added (i.e., superposition)
 - By symmetry, we need only determine impact of V_{in+}
 - Calculation of V_{in-} impact directly follows

Calculate Impact of V_{in+} using Thevenin Models

Analysis follows fairly easily, but there is a simpler way!

Method 2 of Differential Amplifier Analysis

- Partition input signals into common-mode and differential components
- By superposition, we can add the results to determine the overall impact of the input signals

Differential Analysis

- Key observations
 - Inputs are equal in magnitude but opposite in sign to each other
 - By linearity and symmetry, i_{s1} must equal -i_{s2}
 - This implies i_R is zero, so that voltage drop across r_{o4} is zero
 - The sources of M₁ and M₂ are therefore at incremental ground and decoupled from each other!
- Analysis can now be done on identical "half-circuits"

What is the *differential* DC gain?

Common Mode Analysis

- Key observations
 - Inputs are equal to each other
 - By linearity and symmetry, i_{s1} must equal i_{s2}
 - This implies i_R = 2i_{s1} = 2i_{s2}
 - We can view r₀₄ as two parallel resistors that have equal current running through them
- Analysis can also be done on two identical half-circuits

What is the *common mode* DC gain?

Useful Metric for Differential Amplifiers: CMRR

Common Mode Rejection Ratio (CMRR)

- Define: a_{vd} : differential gain, a_{vc} : common mode gain $CMRR = \left(\frac{a_{vd}}{a_{vc}}\right)$
- CMRR corresponds to ratio of differential to common mode gain and is related to received signal-to-noise ratio

$$V_{od} = a_{vd} V_{sig} + a_{vc} V_{noise}$$

$$\Rightarrow \frac{Signal}{Noise} = \left(\frac{a_{vd}}{a_{vc}}\right) \left(\frac{V_{sig}}{V_{noise}}\right) = \text{CMRR}\left(\frac{V_{sig}}{V_{noise}}\right)$$

Another Useful Metric for Differential Amplifiers: PSRR

- a_{vd}: differential gain
 - a_{vp+}: positive power supply gain
 - a_{vp-}: negative power supply gain

$$PSRR^{+} = \left(\frac{a_{vd}}{a_{vp+}}\right) \qquad PSRR^{-} = \left(\frac{a_{vd}}{a_{vp-}}\right)$$

Example: Calculate CMRR and PSRR

- First determine a_{vd}, a_{vc}, a_{vp+}, and a_{vp-}
- Then calculate CMRR and PSRR
 - Note that CMRR and PSRR are often expressed in dB
 - Example: CMRR = $20\log(a_{vd}/a_{vc})$

Common Mode Voltage Range of Differential Amplifier

- While keeping all devices in saturation:
 - What is the maximum common mode output range?
 - Assume V_{id} = 0
 - What is the maximum common mode input range?
 - Assume V_{od} = 0

Large Signal Behavior of Differential Mode Operation

Note: above analysis assumes strong inversion

M.H. Perrott