
CONTENTS 1

Tutorial on the “hspc” Program
by Michael H. Perrott

November, 2002

Copyright c© 2002 by Michael H. Perrott

All rights reserved

Contents

1 Intro 1

2 Installing and Compiling the Program 2

3 Running the Program 2

4 Example Parameter File 2

5 Documentation on Parameter File Statements 5

5.1 Documentation on ‘>’ Commands . 5

5.2 Documentation on ‘−’ Commands . 10

5.3 Documentation on ‘!’ Commands . 10

1 Intro

The Hspice/NGspice Conversion (hspc) program provides an easy method of modifying

Hspice or NGspice netlists to perform the following functions

• Add digital input stimulus to circuit nodes using binary vector notation

• Automatically add source/drain area and perimeter values to each MOSFET instanti-

ation

• Simulate over combinations of temperature, process, and parameter values using au-

tomatically generated .alter statements

• Selectively remove lines from the SPICE netlist

• Add SPICE statements such as signal sources, voltage supply sources, etc. to the

netlist

• Add SPICE statements such as .alter and .end that are explicitly placed at the end of

the netlist.

• Convert transistor instantiations to subcircuits in order to perform simulations involv-

ing random mismatch.

2 INSTALLING AND COMPILING THE PROGRAM 2

Each of the above features will be covered in the text below.

2 Installing and Compiling the Program

The ‘hspc’ package is contained in the file named hspc.tar.gz. To unpack the contents of

that file on a UNIX computer, type the following commands:

gunzip hspc.tar.gz

tar xvf hspc.tar

You will now have a directory named HSPC within which are 5 files:

• hspc.c

• hspc makefile

• matrix func.c

• matrix func.c

• hspc.pdf

To compile the program on a UNIX computer, simply go into the HSPC directory and type:

make -f hspc makefile

The above command will create the executable ’hspc’.

3 Running the Program

To use the hspc program, simply run it with the following parameters

hspc input spice file output spice file parameter file

The hspc program will then alter the input spice file according to the information in the

parameter file, and output the resulting spice deck to the file output spice file. You should

then run SPICE on output spice file.

4 Example Parameter File

To demonstrate the capabilities of the program, we present an example parameter file as

follows below. An explanation of the statements used in the example will be given in the

next sextion.

******* Comment lines have an asterisk as their first character

**** set parameters used to calculate source/drain areas and perimeters

**** Note: set mode diff specifies method of calculation with fingered transistors

4 EXAMPLE PARAMETER FILE 3

**** options: geo, conservative, drain smaller, source smaller

> set mode diff geo

> set hdout .54u

> set hdin .5u

> use four sided perimeter

10

******* Create .alter statements to simulate combinations of

**** process, temperature, and parameter corners

**** example: simulate over all combinations of temp, process, and parameter vdd

**** for the following parameter values

> skew

> process ’mos_library.l’ ss ff

> temp −40 25 125

> vdd 2.37 2.5 2.625

> end skew

20

******* Replace transistor instantiations with subcircuits in order to

**** simulate the impact of random mismatch

> mismatch

******* Remove all lines in the netlist that begin with the specified words

**** Example: flatten the top subcircuit

− .subckt top level ckt

− .ends top level ckt

**** Example: change the value of statements 30

− .TEMP

.TEMP 50

******* Add HSPICE lines that are explicitly placed at the end of the netlist

**** (Note: "> skew > end_skew" statements are treated as "!" statements

**** therefore, place "> skew > end_skew" BEFORE "!.end" statement

!.end

******* Include additional HSPICE statements into the netlist

.prot 40

.lib ’/mit/perrott/cds/models/model.lib’ ss

.unprot

.option post

* .tran .001u 1u

.dc Vin1 −.01 .01 .0001

.ac dec 10 100 100meg

.measure dc biaspoint find v(in) when v(iop2) = 0

.noise v(iop2) vin2 10

Vsupply g1 0 3.5v 50

Vgnd g0 0 0v

Iiop1 0 iop1 64u

Iiop2 0 iop2 192u

4 EXAMPLE PARAMETER FILE 4

Vin1 in dc in dc 0mv ac 1

Vin2 in dc in dc −0.1mv

V dc in dc in 0 1.8v

Cout iop2 0 15p

Rout iop2 0 100k

60

******************** Add digital stimulus lines *****************

**** timing statements: timing delay transition time time inc vlow vhigh

**** input statements: input [signal name(s)] [signal waveform(s)]

** Example: create a 3V, 100 MHz clock with .3ns transition times

> timing 0n .3n 5n 0 3

> input clk [set 1 0 R]

** Example: create a periodic signal waveform A with .3n transition times

** whose transitions occur .4n after rising transitions of clk 70

> timing .4n .3n 10n 0 3

> input A [set 1 0 0 1 0 1 1 1 0 R]

** Note: a convenient way of expressing the above statement is

** to use (symbol value number of symbols) as shown below

** > input A [set 1 (0 2) 1 0 (1 3) 0 R]

** Example: create nonperiodic signal waveforms b and c as identical waveforms

** that transition a few times and then remain at value one

** (Use the same timing as already set above in the last ’timing’ statement)

> input [b c] [set 1 1 0 1 0 0 1 0 1] 80

** Example: load data signals x, y, and z from file "signals.dat" whose first

** column (column 0) corresponds to x, second column to y, and

** third column to z

** Note: notation is [file file name first column] as shown below

** (Use the same timing as already set above in the last ’timing’ statement)

> input [x y z] [file signals.dat 0]

** Example: load data signals u and v from file "signals2.dat" whose fourth

** column (column 3) corresponds to u and fifth column to v 90

> input [u v] [file signals2.dat 3]

******* Add digital stimulus lines with varying phase

** Example: repeat the sequence 1 0 1 1 0 0 for a total period

** of 100 cycles (each cycle period is set by previous "> timing"

** statement), and then output 5 such periods where all

** the cycles in each period are adjusted in phase by

** .00, .05, .10, .05, .00 UI

> phase data 100 [phase 0 5 10 5 0] [data 1 0 1 1 0 0]

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 5

5 Documentation on Parameter File Statements

We now explain the various statements and their options used in a parameter file. We will

reference the example file given in the last section throughout much of this discussion.

There are 4 special characters that specify the purpose of a line when they are used as

the first non-space character in that line. These characters are as follows

• >: Specifies parameters used to modify transistor statements in input spice file or to

auto-generate .alter statements or digital input sources.

• −: Specifies the removal of lines in input spice file that begin with the specified words,

• !: Specifies SPICE statements that should be added to the end of output spice file.

• ∗: Specifies that the line is a comment, and should be ignored in producing out-

put spice file,

All lines in the parameter file that do not begin with any of the above characters will be

considered as SPICE statements that are added to output spice file in addition to the SPICE

statements in input spice file.

We will now go into more detail in regards to commands used in conjunction with the

above characters

5.1 Documentation on ‘>’ Commands

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 6

Parameter file lines starting with ‘>’ are intended to specify modification of SPICE lines

within input spice file in the following ways

• Specification of source/drain area and perimeter values for the transistors specified in

input spice file,

• Auto-generation of .alter statements to simulate combinations of temperature, process,

and parameter variations,

• Replacement of transistor instantiations with subcircuits in order to simulate the im-

pact of random mismatch,

• Auto-generation of pwl signals that correspond to digital signals specified with a binary

sequence.

Beginning with the first item, there are four statements used in specifying the manner in

which the source/drain area and perimeter values are calculated:

• set mode diff: used to specify the manner in the source/drain area and perimeter

dimensions are calculated. The four possible values of set mode diff are conservative,

drain smaller, and source smaller, and geo.

– conservative (geo=0): neither the source or drain of ALL transistors are shared.

– drain smaller (geo=1): the drain of ALL transistors are assumed to be shared

with other transistors or other stripes of the same transistor.

– source smaller (geo=2): the source of ALL transistors are assumed to be shared

with other transistors or other stripes of the same transistor.

– geo: the geo parameter of each transistor is used to determine whether their

source and/or drain is shared.

• set hdout: specifies the source/drain extension when it is NOT shared with another

transistor.

• set hdin: specifies the source/drain extension when it is shared with another transistor.

• use four sided perimeter: when calculating perimeter capacitance, include the sidewall

adjacent to the gate.

Figure 1 displays the corresponding transistor configurations for each value of geo.

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 7

hdouthdout

W

hdouthdout

W

hdin

SD

hdouthdout

W

hdin

DS

hdouthdout

W

hdin

DS

hdin

geo=0 geo=1

geo=2 geo=3

Figure 1 Diffusion parameters for different values of geo.

The simulation of a spice deck over temperature, process, and parameter variations can

be performed by using the “> skew” command. As an example, the statements

> skew

> process 'mos_library.l' ss ff

> temp −40 125

> vdd 2.37 2.625

> end skew

add the following .alter statements to the Spice netlist:

.alter (proc,temp,vdd)=(ss,−40,2.37)

.lib 'mos_libraryl' ss

.temp −40

.param vdd = 2.37

.alter (proc,temp,vdd)=(ss,−40,2.625)

.lib 'mos_libraryl' ss

.temp −40

.param vdd = 2.625

10

.alter (proc,temp,vdd)=(ss,125,2.37)

.lib 'mos_libraryl' ss

.temp 125

.param vdd = 2.37

.alter (proc,temp,vdd)=(ss,125,2.625)

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 8

.lib 'mos_libraryl' ss

.temp 125

.param vdd = 2.625

20

.alter (proc,temp,vdd)=(ff,−40,2.37)

.lib 'mos_libraryl' ff

.temp −40

.param vdd = 2.37

.alter (proc,temp,vdd)=(ff,−40,2.625)

.lib 'mos_libraryl' ff

.temp −40

.param vdd = 2.625

30

.alter (proc,temp,vdd)=(ff,125,2.37)

.lib 'mos_libraryl' ff

.temp 125

.param vdd = 2.37

.alter (proc,temp,vdd)=(ff,125,2.625)

.lib 'mos_libraryl' ff

.temp 125

.param vdd = 2.625

When using the skew function, you must specify at least one temperature and process

parameter (and the library for the process). You may also include up to four parameters

associated with .param statements.

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 9

Transistor instantiations can be replaced with subcircuits in order to simulate the impact

of random mismatch. As an example, by including the “> mismatch” command in the

parameter file, the transistor instantiation:

M18 n0 db net38 gnds nch w='nwid' l='nlen'

is changed to

XM18 n0 db net38 gnds

+ nch len='nlen' wid='nwid' mul=1

+ adrain='hdout*(nwid)' asource='hdout*(nwid)'

+ pdrain='2*hdout+2*(nwid)' psource='2*hdout*2*(nwid)'

One would then include a file that provides the transistor subcircuits encompassing mis-

match. An example of such a file is as follows:

∗∗∗∗ Get the following numbers from the fab that you are using ∗∗∗
.param Avtn = ???? $ V∗um
.param Avtp = ???? $ V∗um

.param Abn = ???? $ %∗um

.param Abp = ???? $ %∗um

∗∗∗∗ These are the subcircuit models that implement transistor mismatch ∗∗∗
.subckt nch d g s b wid=0 len=0 mul=1 geom=0 adrain=0 asource=0 pdrain=0 psource=0

.param rtarea = 'sqrt(mul*wid*len*1e12)' 10

.param delvt = agauss(0.0, 'Avtn/rtarea', 1)

.param new w = gauss('wid', '0.01*Abn/rtarea', 1)

mn d g s b nch w=new w l=len delvto=delvt m=mul geo=geom ad=adrain as=asource

pd=pdrain ps=psource

.ends nch

.subckt pch d g s b wid=0 len=0 mul=1 geom=0 adrain=0 asource=0 pdrain=0 psource=0

.param rtarea = 'sqrt(mul*wid*len*1e12)'

.param delvt = agauss(0.0, 'Avtp/rtarea', 1)

.param new w = gauss('wid', '0.01*Abp/rtarea', 1) 20

mp d g s b pch w=new w l=len delvto=delvt m=mul geo=geom ad=adrain as=asource

pd=pdrain ps=psource

.ends pch

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 10

Parameter file lines starting with ‘>’ can also be used to specify digital binary sequence

signals that will be included in output spice file as SPICE pwl waveforms. There are two

classes of statements used to specify the digital waveforms

• timing statements: specify timing and voltage swing parameters to be used for all the

following input statements,

• input statements: specification of signal nodes to apply the source to, and the waveform

in terms of binary vectors.

The general form of timing statements is

> timing delay transition time time inc vlow vhigh,

and the meaning of each of the parameters in this statement is given as

• delay: initial delay of the waveform,

• transition time: time to complete rising or falling transitions,

• time inc: the amount of time spanned by each binary symbol,

• vlow: the voltage value corresponding to the binary symbol 0,

• vhigh: the voltage value corresponding to the binary symbol 1.

The input statements consist of several variations that are best explained through exam-

ples

• > input clk [set 1 0 R]: creates a pwl voltage source V clk that periodically alter-

nates between vhigh and vlow with period 2*time inc (as specified by the last timing

statement).

• > input A [set 1 0 0 1 0 1 1 1 0 R]: creates a periodic pwl voltage source V A that

alternates between vhigh and vlow according to the binary vector given.

• > input A [set 1 (0 2) 1 0 (1 3) 0 R]: a convenient shorthand method to implement

the same waveform specified in the previous statement.

• > input A [set 1 (0 2) 1 0 (1 3) 0]: implements the same waveform as specified in

the previous statement, with the exception that it is not repeated. Once the specified

transitions are executed, V A remains at the last specified symbol (which yields vlow

in this case).

• > input [A B] [set 1 (0 2) 1 0 (1 3) 0]: implements two identical pwl voltage sources,

V A and V B, with the same waveform as specified in the previous statement.

5 DOCUMENTATION ON PARAMETER FILE STATEMENTS 11

• > input [x y z] [file signals.dat 0]: implements pwl voltage sources V x, V y, and

V z whose waveform voltage values are specified by columns in the file signals.dat

and whose timing parameters are set by the most recent timing statement. The last

parameter in [file . . .], which is 0 in this case, specifies the column corresponding to

node x. Nodes y and z then take their data from the next two columns in the file.

5.2 Documentation on ‘−’ Commands

Parameter file lines starting with ‘−’ specify SPICE lines in input spice file that should not

be included in output spice file. The general form of this statement is

− word1 word2 . . .,

in which case all lines in input spice file that begin with word1, word2, and any following

words will not be included in output spice file. (Note that the ’-’ symbol must be followed by

a space). Any number of words may be specified, which allows one a measure of selectivity

when removing lines. For instance, the line

− .MODEL NMOS

discludes all NMOS modeling statements in input spice file, while

− .MODEL

discludes all modeling statements (NMOS and PMOS) in input spice file.

5.3 Documentation on ‘!’ Commands

Parameter file lines starting with ‘!’ specify SPICE lines that should be included at the end

of output spice file. I main use this option to place a .end statement at the end of the file.

Can also be useful for placing .alter statements.

