
HSPICE Toolbox for Matlab and Octave

(also for use with Ngspice)

Michael H. Perrott

http://www.cppsim.com/download hspice tools.html

Copyright 1999 by Silicon Laboratories, Inc.

29 July 2011

Note: This software is distributed under the terms of the

GNU Public License (see the included COPYING file for more details),

and comes with no warranty or support.

The Hspice toolbox for Matlab and Octave is a collection of routines that allow you to

manipulate and view signals generated by Hspice or Ngspice simulations within either the

Matlab or Octave programs. The primary routine is a mex program called loadsig that

reads binary output files of transient, DC, or AC sweep data generated by Hspice or Ngspice

into Matlab or Octave. The remaining routines are used to extract particular signals and

view them. For simplicity, we will focus on Matlab in the remainder of this document, but

the instructions for use with Octave are identical.

We will begin this document by explaining how to include the Hspice toolbox in your

Matlab session. A list of each of the current functions will then be presented. Finally, we

will provide examples of using these routines to view and postprocess signals from Hspice

output files.

Setup

To use the Hspice toolbox, simply place the included files into a directory of your choice,

and then add that directory to your Matlab path. For example, inclusion of the path

’/home/user/matlab/bin’ in Matlab can be done by adding the line

addpath(’/home/user/matlab/bin’)

1



to the file startup.m located in your home directory. In addition, you can specify the plot

background to be black by adding another line to startup.m:

colordef none;

Once you’ve made the above changes to startup.m, start Matlab as you normally would.

Matlab will automatically read startup.m from your home directory and execute its com-

mands.

Platform Compatibility

All files should work across different computer platforms, though the loadsig mexfile should

generally be recompiled. It is currently compiled for 64-bit Redhat Linux and 64-bit Windows

7 machines. To compile the loadsig function for a different platform, go to the directory

containing loadsig.c within Matlab, and then type mex loadsig.c within Matlab. Note

that you can also compile loadsig in Octave in the exact same manner since the loadsig.c

source code is compatible with both Matlab and Octave.

List of Functions

The following functions are currently included in the Hspice toolbox:

• x = loadsig(’hspice_output_filename’);

– Returns a Matlab structure into variable x that includes all of the signals that

are present in the Hspice binary output file, hspice_output_filename.

• lssig(x)

– Lists all of the Hspice signal names present in the structure x.

• y = evalsig(x,’nodename’);

– Pulls out the signal nodename from the structure x and places into variable y.

The string nodename can be an expression involving several Hspice signals. If you

only performed one sweep in the simulation (as is common), then y will contain

one column. If you performed several sweeps, y will contain several columns

that correspond to the data for each sweep. If you have set the global Matlab

variable sweep to a nonzero number, however, then y will contain only one column

corresponding to the value of sweep. If sweep equals zero, all the sweep columns

are included in y.

2



• plotsig(x,’plot_expression’,’optional_plotspec’)

– Plots signals from the structure x according to the expression given in plot_expression.

The string optional_plotspec is used to create logscale plots; it can be specified

as logx, logy, or logxy. The string plot_expression specifies the nodenames,

and corresponding mathematical operations, that you would like to view. In this

expression, commas delimit curves to be overlayed and semicolons delimit sepa-

rate subplots on the same figure. All numeric node names should be prepended

by ’@’ to distinguish them from constants. Some examples of using plotsig are:

∗ plotsig(x,’v1,v2;v3’): overlays v1 and v2 on the same subplot, and plots

v3 on a separate subplot.

∗ plotsig(x,’(v1+v2)^2; log(abs(v3))’): plots the listed expressions on

separate subplots.

∗ plotsig(x,’db(v1); ph(v1)’,’logx’): plots the magnitude (in dB) and

phase (in degrees) of v1 on a semilogx axis.

∗ plotsig(x,’v1+@2+3’): plots the addition of node v1, node 2, and the con-

stant 3.

∗ plotsig(x,’integ(TIME,v1); avg(TIME,v2)’): plots the integral of v1

and average of v2 on separate subplots.

• tzoom

– Brings up buttons on the plot to allow nice zooming functions. Type help tzoom

at the Matlab prompt for more info.

• figname

– Allows easy labeling of figure windows. Type help figname at the Matlab prompt

for more info.

• xlima

– Sets the x-limits of all subplots in a figure. Three options are possible:

∗ xlima: sets all subplots to the same x-axis as the last subplot that was zoomed

into,

∗ xlima([xs xe]): sets all subplots to the x-axis limits specified,

∗ xlima(’auto’): resets all subplots back to autoscaling.

• eyesig(x,period,start_off,’nodename’)

3



– Creates an eye diagram for nodename contained in x with the specified period.

All data samples prior to start_off are ignored when creating the diagram (useful

for removing the influence of transient effects from the eye diagram). The string

nodename can be an expression involving several variables for the CppSim version

(eyesig), but assumes a constant time step (which is invalid for Hspice simula-

tions). NOTE: use instead eyesig_old for Hspice simulations — this version can

only handle one variable and is more primitive than its CppSim counterpart, but

does take into account the non-constant time step of Hspice simulations.

Examples

Viewing Signals Generated by Hspice

Use the Matlab command cd to go to a directory containing either transient, DC, or AC

sweep data within a binary file generated from Hspice. We will assume a filename of

test.tr0, and now list a series of Matlab commands that will be used to display nodes

q and qb in that file.

• x = loadsig(’test.tr0’); %% loads Hspice signals into x

• lssig(x) %% verify that nodes q and qb are present

• plotsig(x,’q; qb; q-qb’) %% plot expressions of interest

Viewing Signals Generated by Ngspice

Use the Matlab command cd to go to a directory containing either transient, DC, or AC

sweep data within a binary file generated from Ngspice. We will assume a filename of

simrun.raw, and now list a series of Matlab commands that will be used to display nodes q

and qb in that file.

• x = loadsig(’simrun.raw’); %% loads Ngspice signals into x

• lssig(x) %% verify that nodes q and qb are present

• plotsig(x,’q; qb; q-qb’) %% plot expressions of interest

4



Doing Postprocessing in Matlab

Use the Matlab command cd to go to a directory containing a binary transient, DC, or AC

sweep file generated from Hspice. We will assume a filename of test.tr0, and now list a

series of Matlab commands that will be used to postprocess nodes q and qb in that file.

• x = loadsig(’test.tr0’); %% loads Hspice signals into x

• lssig(x) %% verify that nodes q and qb are present

• t = evalsig(x,’TIME’); %% loads time samples into Matlab variable t

• q = evalsig(x,’q’); %% loads signal q into Matlab variable q

• qb = evalsig(x,’qb’); %% loads signal qb into Matlab variable qb

• qdiff = q-qb; %% perform expressions in Matlab

• plot(t,q,t,qb,t,qdiff) %% plot variables using Matlab plot command

5


