A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator

ISSCC 2010, Session 13.1

M.H. Perrott, S. Pamarti¹, E. Hoffman², F.S. Lee, S. Mukherjee, C. Lee, V. Tsinker³, S. Perumal⁴, B. Soto⁵, N. Arumugam, B.W. Garlepp

SiTime Corporation, Sunnyvale, CA, USA

- ¹ UCLA, Los Angeles, CA, USA
- ² Global Foundries, Sunnyvale, CA, USA
- ³ Invensense, Sunnyvale, CA, USA

⁴ Consultant

⁵ SLAC National Accelerator Laboratory, Palo Alto, CA USA

Why Switch to MEMS-based Programmable Oscillators?

Quartz Oscillators

- A part for each frequency and non-plastic packaging
 - **Non-typical frequencies** require long lead times

- Same part for all frequencies and plastic packaging
 - Pick any frequency you want without extra lead time

We can achieve high volumes at low cost using IC fabrication

Architecture of MEMS-Based Programmable Oscillator

MEMS device provides high Q resonance at 5 MHz

- CMOS circuits provide DC bias and sustaining amplifier
- Fractional-N synthesizer multiplies 5 MHz MEMS reference to a programmable range of 750 to 900 MHz
- Programmable frequency divider enables 1 to 115 MHz output

Compensation of Temperature Variation

- High resolution control of fractional-N synthesizer allows simple method of compensating for MEMS frequency variation with temperature
 - Simply add temperature sensor and digital compensation logic

The Focus of This Talk

How do we achieve a fractional-N synthesizer with low area, low power, and low design complexity?

Analog Versus Digital Fractional-N Synthesizer?

Analog PLL wins in 0.18u CMOS for low power

Can we achieve a low area (and low power) analog PLL with reduced design effort?

The Issue of Area: What Causes a Large Loop Filter?

- Loop filter noise (primarily from charge pump) often dominates PLL phase noise at low offset frequencies
- We will show that
 - The common approach of *reducing* loop filter noise leads to increased loop filter area (i.e., C₂ for charge pump PLL)
 - We can instead increase PD gain to lower the *impact* of loop filter noise
 - Loop filter area can be smaller

First Step: Model PLL with Charge Pump Noise

Increasing I_{pump} Reduces Input-Referred Loop Filter Noise

Increasing PD Gain Reduces Impact of Loop Filter Noise

But how do we increase the PD gain?

PD Gain of Classical Tristate PFD

Compute gain by averaging Up/Down pulses vs. phase error

Note that tristate PFD has a phase error range of 2 Ref periods

Proposed Method of Increasing Phase Detector Gain

Reduce phase detection range to 1/4 of the Ref period

Achieves 8X increase in phase detector gain

How do we capitalize on this reduced range in the filter?

Simple RC Network Can Be Utilized

- Achieves full voltage range at V_{c1} as phase error is swept across the reduced phase detector range
- Note: instead of being influenced by charge pump gain after the PD, we are influenced by (regulated) supply voltage

Implementation of High Gain Phase Detector

Multi-Phase Pulse Generation (We'll Use it Later...)

Overall Loop Filter – Consider Using Charge Pump

Can we remove the charge pump to reduce the analog design effort?

Passive RC Network Offers a Simpler Implementation

The Issue of Reference Spurs

Leverage Multi-Phase Pulsing

Pulsing Resistor Multiplies Resistance!

- Resistor only passes current when pulsed on
 - Average current through resistance is reduced according to ratio of On time, T_{on}, versus pulsing Period, T_{period}
 - Effective resistance is actual resistance multiplied by ratio T_{period}/T_{on}

Resistor multiplication allows a large RC time constant to be implemented with smaller area

Parasitic Capacitance Reduces Effective Resistance

- Parasitic capacitance stores charge during the pulse "On" time
 - Leads to non-zero current through resistor during pulse
 Off time
 - Effective resistance reduced

Spice simulation and measured results reveal that >10X resistor multiplication can easily be achieved

Switched Resistor Achieves PLL Zero with Low Area

- should be set well below PLL bandwidth of 30 kHz
 - Assume desired w_z = 4 kHz
 - Set C_f = 2.5pF (for low area)
 - Required R_{3_eff} = 16 MegaOhms
 - Large area

Proper choice of T_{on} and T_{period} allows $R_{3 eff} = 16$ MegaOhms to be achieved with $R_3 = 500$ kOhms!

The Issue of Initial Frequency Acquisition

- During initial frequency acquisition, V_{tune}(t) must be charged to proper bias point
 - This takes too long with R_{3_eff} = 16 MegaOhms

How do we quickly charge capacitor C₃ during initial frequency acquisition?

Utilize Switched Capacitor Charging Technique

Charge C₃ high or low only when frequency error is detected

No steady-state noise penalty, minimal power consumption

CppSim Behavioral Simulation of Frequency Locking

CMOS and MEMS Die Photos Show Low Area of PLL

- Active area:
 - VCO & buffer & bias: 0.25mm²
 - PLL (PFD, Loop Filter, divider): 0.09 mm²
 - Output divider:
 0.02 mm²
- **External supply**

1.8/3.3V

- Current (20 MHz output, no load)
 - **ALL: 3.2/3.7mA**
 - **VCO: 1.3mA**
 - PLL & Output Divider: 0.7mA

Measured Phase Noise (100 MHz output)

Suitable for most serial applications, embedded systems and FPGAs, audio, USB 1.1 and 2.0, cameras, TVs, etc.

Frequency Variation After Single-Temperature Calibration

Conclusion

- A MEMS-based programmable oscillator provides an efficient solution for industrial clocking needs
 - Programmability of frequency value simplifies supply chain and inventory management
 - Leveraging of semiconductor processing, rather than custom tools for quartz, allows low cost and low lead times
- Proposed fractional-N synthesizer allows low area, low power, and reduced analog design effort
 - High gain phase detector lowers impact of loop filter noise
 - Switched resistor technique eliminates the charge pump and reduces area through resistor multiplication
 - Switched capacitor frequency detection enables reasonable frequency acquisition time with no noise penalty

Frequency references have entered the realm of integrated circuit design and manufacturing

Supplemental Slides

Noise Analysis (Ignore Parasitic Capacitance of Resistors)

- Assumption: switched resistor time constants are much longer than "on time" of switches
 - Single-sided voltage noise contributed by each resistor is simply modeled as 4kTR_{eff} (same as for a resistor of the equivalent value)
- Note: if switched resistor time constants are shorter than "on time" of switches
 - Resistors contribute kT/C noise instead of 4kTR_{eff}
 - We would not want to operate switched resistor filter in this domain since time constants would not be boosted

Issue: Nonlinearity in Switched Resistor Loop Filter

32

Nonlinearity Due to Pulse Width Modulation

Nonlinearity Due to Hold Time Variation

 Achieved with higher VCO frequency

Nonlinearity Is Not An Issue For This Design

Folded quantization noise due to nonlinearity is reasonably below other noise sources for this design

- However, could be an issue for a wide bandwidth PLL design
- Use (CppSim) behavioral simulation to evaluate this issue

What If We Use A Pure Charge Pump Loop Filter?

- PD Gain increased by 2 compared to tristate PFD
 - Reduced phase error range and max/min current occurs
- High linearity despite charge pump current mismatch
 - Similar to XOR PD, but noise is reduced