VCO-Based Wideband Continuous-Time Sigma-Delta Analog-to-Digital Converters

AACD 2010

Michael H. Perrott

Copyright © 2010 by Michael H. Perrott All rights reserved.

Motivation

- A highly digital receive path is very attractive for achieving multi-standard functionality
- A key issue is achieving a wide bandwidth ADC with high resolution and low power
- Minimal anti-alias requirements are desirable for simplicity

Continuous-Time Sigma-Delta ADC structures have very attractive characteristics for this space

A Basic Continuous-Time Sigma-Delta ADC Structure

- Sampling occurs at the quantizer after filtering by $H(s)$
- Quantizer noise is shaped according to choice of $H(s)$
- High open loop gain required to achieve high SNR

We will focus on achieving an efficient implementation of the multi-level quantizer by using a ring oscillator

Consider Time-to-Digital Conversion

- Quantization in time achieved with purely digital gates
- Easy implementation, resolution improving with Moore's law

How can we leverage this for quantizing an analog voltage?

Adding Voltage-to-Time Conversion

- Analog voltage is converted into edge times
- Time-to-digital converter then turns the edge times into digitized values
- Key issues
- Non-uniform sampling
- Noise, nonlinearity

Is there a simple implementation for the Voltage-to-Time Converter?

A Highly Digital Implementation

- A voltage-controlled ring oscillator offers a simple voltage-to-time structure
- Non-uniform sampling is still an issue

We can further simplify this implementation and lower the impact of non-uniform sampling

Making Use of the Ring Oscillator Delay Cells

- Utilize all ring oscillator outputs and remove TDC delays
- Simpler implementation
- TDC output now samples/quantizes phase state of oscillator

Improving Non-Uniform Sampling Behavior

- Oscillator edges correspond to a sample window of the input
- Sampling the oscillator phase state yields sample windows that are much more closely aligned to the TDC clk

Multi-Phase Ring Oscillator Based Quantizer

Sample 1

Sample 2

Sample 3

- Adjustment of $\mathrm{V}_{\text {tune }}$ changes how many delay cells are visited by edges per Ref clock period

Sample 4

- Quantizer output corresponds to the number of delay cells that experience a transition in a given Ref clock period

More Details ...

- Choose large enough number of stages, N, such that transitions never cycle through a given stage more than once per Ref clock period
- Assume a high Ref clock frequency (i.e., 1 GHz)
- XOR operation on current and previous samples provides transition count

A First Step Toward Modeling

- VCO provides quantization, register provides sampling - Model as separate blocks for convenience
- XOR operation on current and previous samples corresponds to a first order difference operation
- Extracts VCO frequency from the sampled VCO phase signal

Corresponding Frequency Domain Model

- VCO modeled as integrator and K_{v} nonlinearity
- Sampling of VCO phase modeled as scale factor of 1/T

- Quantizer modeled as addition of quantization noise

- Key non-idealities:
- VCO K ${ }_{\mathrm{v}}$ nonlinearity
- VCO noise
- Quantization noise

Example Design Point for Illustration

SNR/SNDR Calculations with 20 MHz Bandwidth

Simulated ADC Output Spectrum

Conditions	SNDR
Ideal vCO Thermal Noise vcO Thermal + Nonlinearity	68.2 dB

VCO K_{v} nonlinearity is the key performance bottleneck

Classical Analog Versus VCO-based Quantization

- Much more digital implementation
- Offset and mismatch is not of critical concern
- Metastability behavior is potentially improved
- Improved SNR due to quantization noise shaping

Implementation is high speed, low power, low area

Key Performance Issues: Nonlinearity and Noise

- Very hard to build a simple ring oscillator with linear K_{v}
- Noise floor set by VCO phase noise is typically higher than for analog amplifiers at same power dissipation

What Can Analog Bring to the Table?

- We know how to build fairly linear gain blocks with relatively low noise
- For this simple function, analog offers relatively high speed, low area, low power
- Analog gain can reduce impact of noise in blocks that follow it

Nonlinearity is still an issue

Massive Digital Processing Can Deal with Nonlinearity

Linear Gain Circuit

Feedback Is Our Friend

- Structure is a continuous-time Sigma-Delta ADC
- Issue: must achieve a highly linear DAC structure
- Otherwise, noise folding and other bad things happen ...

A Closer Look at the DAC Implementation

What is so special about doing this?

Recall that Ring Oscillator Offers Implicit Barrel Shifting

Implicit Barrel Shifting Applied to DAC Elements

- Acts to shape DAC mismatch and linearize its behavior

A Geometric View of the VCO Quantizer/DEM and DAC

First Generation Prototype

- Second order dynamics achieved with only one op-amp
- Op-amp forms one integrator
- $I_{\text {dac1 }}$ and passive network form the other (lossy) integrator
- Minor loop feedback compensates delay through quantizer
- Third order noise shaping is achieved!
- VCO-based quantizer adds an extra order of noise shaping

Custom IC Implementing the Prototype

- Efficiency: 0.5 pJ/conv. step

Design of the VCO Core Inverter Cell

- 31 stages
- Fast for good resolution (< 100 psec / stage)
- Large $\mathrm{K}_{\mathrm{vco}}(600-700 \mathrm{MHz})$ with good dynamic range
- 2 bits of coarse tuning for process variations
- < 8 mW for 1 GSPS 5-bit quantizer / DEM

Opamp Design is Straightforward

Primary Feedback DAC Schematic

- Fully differential RZ pulses
- Triple-source current steering
- $\mathrm{I}_{\text {OFF }}$ is terminated off-chip

Measured Spectrum From Prototype

Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)

How Do We Overcome K_{v} Nonlinearity to Improve SNDR?

Voltage-to-Frequency VCO-based ADC (1st Order Σ - Δ)

- In prior work, VCO frequency is desired output variable
- Input must span the entire non-linear voltage-to-frequency $\left(K_{v}\right)$ characteristic to exercise full dynamic range
- Strong distortion at extreme ends of the Kv curve

Proposed Voltage-to-Phase Approach (1st Order $5-\Delta$)

- VCO output phase is now the output variable
- Small perturbation on $\mathrm{V}_{\text {tune }}$ allows large VCO phase shift
- VCO acts as a CT integrator with infinite DC gain

High SNDR requires higher order $\Sigma-\Delta \ldots$

Proposed $4^{\text {th }}$ Order Architecture for Improved SNDR

- Goal: ~80 dB SNDR with 20 MHz bandwidth
- Achievable with $4^{\text {th }}$ order loop filter, 4-bit VCO-based quantizer
- 4-bit quantizer: tradeoff resolution versus DEM overhead
- Combined frequency/phase feedback for stabilityISNDR

Schematic of Proposed Architecture

- Opamp-RC integrators
- Better linearity than Gm-C, though higher power

Schematic of Proposed Architecture

- Low power
- Must design carefully to minimize impact of parasitic pole

Schematic of Proposed Architecture

- DEM implicitly performed on frequency feedback (Miller)
- RZ DAC unit elements

Behavioral Simulation (available at www.cppsim.com)

VCO nonlinearity is not the bottleneck for achievable SNDR!

Circuit Details

VCO Integrator Schematic

VCO Quantizer Schematic

Phase Quantizer, Phase and Frequency Detector

- Highly digital implementation
- Phase sampled \& quantized by SAFF
- XOR phase and frequency detection with FF and XOR
- Automatic DWA for frequency detector output code
- Must explicitly perform DWA on phase detector output code

Main Feedback DAC Schematic

Bit-Slice of Minor Loop RZ DAC

- RZ DAC unit elements transition every sample period
- Breaks code-dependency of transient mismatch (ISI)
- Uses full-swing logic signals for switching

Opamp Schematic

Parameter	Value
DC Gain	63 dB
Unity-Gain Frequency	4.0 GHz
Phase Margin	55°
Input Referred Noise Power (20 MHz BW)	11 uV (rms)
Power $\left(\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}\right)$	22.5 mW

- Modified nested Miller opamp
- 4 cascaded gain stages, 2 feedforward stages
- Behaves as 2-stage Miller near cross-over frequencies
- Opamp 1 power is 2 X of opamps 2 and 3 (for low noise)

DEM Architecture (3-bit example)

- Achieves low-delay to allow 4-bit DEM at 900 MHz
- Code through barrel shift propagates in half a sample period

Die Photo (0.13u CMOS)

Die photo courtesy of Annie Wang (MTL)

- Active area
- $0.45 \mathrm{~mm}^{2}$
- Sampling Freq
- 900 MHz
- Input BW
- 20 MHz
- Supply Voltage
- 1.5 V
- Analog Power
- 69 mW
- Digital Power
- 18 mW

Measured Results

- 78 dB Peak SNDR performance in 20 MHz
- Bottleneck: transient mismatch from main feedback DAC
- Architecture robust to VCO K ${ }_{\mathrm{v}}$ non-linearity

Figure of Merit: $330 \mathrm{fJ} /$ Conv with 78 dB SNDR

Behavioral Model Reveals Key Performance Issue

- Amplifier nonlinearity degrades SNDR to 81 dB DAC transient mismatch degrades SNDR to 78 dB
- DEM does not help this
- Could be improved with dual RZ structure

Transient DAC mismatch is likely the key bottleneck

Conclusion

- VCO-based quantization is a promising component to achieve high performance $\Sigma-\Delta$ ADC structures
- High speed, low power, low area implementation
- First order shaping of quantization noise and mismatch
- K_{v} non-linearity can be a limitation
- Demonstrated a $4^{\text {th }}$-order CT $\Delta \Sigma$ ADC with a VCO-based integrator and quantizer
- Proposed voltage-to-phase conversion to avoid distortion from Kv non-linearity
- Achieved 78 dB SNDR in 20 MHz BW with 87 mW power
- Key performance bottleneck: transient DAC mismatch

