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Photoplethysmographic biosensing has been of recent interest, since it provides
electrode-free operation for continuous health-monitoring applications [1]. This
paper presents a <4μW heart-rate (HR) monitor IC based on measurement of
fluctuations in the light intensity passing through tissue such as a finger [2-4].
As shown in Fig. 22.3.1, key components of the system include a logarithmic,
digital-to-resistance converter (DRC) that forms the load of an external photodi-
ode, and a non-uniform quantizer that provides error information to a digital
accumulator controlling the DRC input. As the photodiode current fluctuates due
to HR-induced pulsing of bloodflow through the tissue, the feedback loop
adjusts the DRC load resistance in order to maintain constant voltage across the
photodiode.  As such, the accumulator output, OUTADC[k], provides a digital rep-
resentation of HR-induced fluctuations of the photodiode current, and the loga-
rithmic implementation of the DRC accommodates 3 orders of magnitude in light
intensity.  In order to obtain instantaneous HR frequency, HR[k], off-chip digital
signal processing is performed on OUTADC[k]. 

The use of a quantizer to directly sense the error information in the feedback loop
introduces the challenge of achieving low quantization noise along with a suffi-
ciently large range to allow fast response to large perturbations. To address this
issue, non-uniform steps are utilized, such that a high-resolution region is active
during steady-state operation, and coarser regions accommodate large pertur-
bations. As indicated in Fig. 22.3.1, this non-uniform quantization profile is
achieved by cascading 3 stages of a Laddered-Inverter Quantizer/Amplifier/Filter
(LIQAF) circuit introduced in this paper. The LIQAF circuit provides amplification
and lowpass filtering, in addition to quantization, and cascading LIQAF stages
leads to the desired non-uniform quantization characteristic. The feedback loop
is designed such that the nominal operating point of the non-uniform quantizer
is placed within the region of highest resolution, thus allowing low quantization
noise to be achieved under steady-state conditions.

Figure 22.3.2 provides details of the DRC, which consists of series-connected
polysilicon resistors and PMOS switches that are controlled in thermometer-
coded fashion by a digital, 1st-order, 5b output ΔΣ modulator.  Note that since
the resistance steps are nonlinear due to the desired logarithmic action of the
DRC, a higher-order, multi-bit ΔΣ modulator would encounter issues with noise
folding. Fortunately, the low bandwidth of <5Hz required for sensing HR-induced
fluctuations allows for a large oversampling ratio with the 32kHz clock frequen-
cy, so that a 1st-order ΔΣ structure is adequate for the needs of this application.

To explain the key principles of the proposed LIQAF circuit, Fig. 22.3.3 shows a
simple, 2-output LIQAF design along with its DC characteristic. As depicted in
the figure, we can consider the circuit as a combination of two CMOS inverters
that have different ratios of NMOS versus PMOS gate lengths. When Vin is low
and both outputs are high, transistor M1 is inactive such that Vout0 transitions
with increasing Vin according to a CMOS inverter characteristic with one NMOS
device and two series PMOS devices.  In contrast, when Vin is high and both out-
puts are low, M2 is inactive such that Vout1 transitions with decreasing Vin
according to a CMOS inverter characteristic with two series NMOS devices and
one PMOS device.  Note that Vout0 cannot transition high unless Vout1 is also
high, and Vout1 cannot transition low unless Vout0 is also low. As such, the LIQAF
circuit provides guaranteed monotonicity in the quantizer characteristic, and low
power is achieved since current is shared for all of the devices.

A 15-output LIQAF structure is used in the HR monitor IC as shown in Fig.
22.3.4, which yields a 15-level quantizer that is guaranteed to be monotonic and
re-uses the same current for all of the quantizer levels. With the increase in num-
ber of quantizer outputs, large output resistance is encountered for most outputs

due to the larger effective gate length of their respective inverter structures.
Large output resistance leads to low bandwidth and relatively high intrinsic gain,
gmro,, when a given inverter is in its transition region. Fortunately, the low band-
width is an asset to the HR application, since it provides rejection of undesired
noise. However, the high intrinsic gain poses an issue when cascading LIQAF
stages by using the Vout7 output as the input to the next LIQAF stage. Lower
intrinsic gain is desirable to avoid overly reducing the range of the high-resolu-
tion quantizer region beyond what is needed to avoid quantization noise becom-
ing dominant in the HR sensor frontend. Fortunately, reduced intrinsic gain for
the Vout7 output is readily achieved by using the transistor-based load shown in
Fig. 22.3.4. As seen in the measured DC characteristic shown in the figure, the
presence of the load leads to a reduced slope over the key portion of the Vout7
transition region impacting the LIQAF stage to follow.

Figure 22.3.5 shows the overall 3-stage LIQAF-based quantizer structure and
measured quantizer characteristic, along with SPICE-based calculations of gain
and bandwidth across process and 0 to 70°C temperature variation. The quan-
tizer characteristic reveals progressively improved resolution as the input volt-
age is swept from coarse to fine regions. Note that the parasitic poles introduced
by the LIQAF quantizer stages are sufficiently high to avoid stability issues for
the feedback system shown in Fig. 22.3.1, which is designed to have ~7Hz
closed-loop bandwidth.

A die photo of the 180nm CMOS HR monitor IC is shown in Fig. 22.3.7.
Measured IC current for all analog and digital blocks except for output data driv-
ers is <7μA with 0.5V supply for an external photodiode current range of 4nA to
3.5μA, thereby leading to <4μW power consumption for the IC. Figure 22.3.6(a)
shows the measured digital bandpass output, OUTBPF[k], and Fig. 22.3.6(b)
shows the HR frequency, HR[k], while using only ambient light passing through
the first author’s index finger within an office setting. In this case, the photodi-
ode bias current is measured as 18nA using a 10kΩ resistor in series with the
photodiode.  In order to more fully characterize the performance of the HR mon-
itor IC, an external LED circuit modulated by a sine wave signal is used as a light
source. Given this arrangement, Fig. 22.3.6(c) shows measured error perform-
ance of the instantaneous frequency, HR[k], across a 4nA-to-3.5μA range of
photodiode bias current under fixed 0.5% peak-to-peak variation and 1.2Hz (i.e.,
72bpm) modulation frequency. The results indicate better than 0.25% rms error
for instantaneous frequency, HR[k], even at an extremely low photodiode bias
current of 4nA, which reveals excellent sensitivity compared to previous work
[2]. Figure 22.3.6(d) shows measured error performance of the instantaneous
HR frequency across a 0.5-to-5Hz (i.e., 30-300bpm) modulation frequency with
4nA of photodiode bias current and 0.5% peak-to-peak variation, which reveals
worse case performance of 1.2% rms error for instantaneous frequency, HR[k],
using the fixed digital bandpass filter centered at 1.8Hz (108bpm).  Further
improvement is possible by using an adaptive digital bandpass filter in which the
a coefficient is adjusted.
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Figure 22.3.1: System-level view of heart-rate sensor. Figure 22.3.2: Logarithmic digital-to-resistance converter (DRC).

Figure 22.3.3: Basic principles of a 2-output LIQAF circuit.

Figure 22.3.5: 3-stage LIQAF quantizer with measured characteristic. Figure 22.3.6: Measured results.

Figure 22.3.4: 15-output LIQAF with gain-reduction load on Vout7.
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Figure 22.3.7: Micrograph of the 180nm CMOS die.


