RMO1B

A Multiphase PWM RF Modulator Using a VCO-Based Opamp in 45nm CMOS

Min Park¹ and Michael H. Perrott² Massachusetts Institute of Technology

¹Now at Maxim Integrated Products ²Now at SiTime Corporation

RFIC – Anaheim May 23-25, 2010

Motivation

- There has been much interest in achieving analog functionality with reduced analog design effort
- One promising approach is using *time* as a primary signal domain

We will consider this approach in the context of an RF modulator targeting wireless LAN specifications.

Outline

- Comparison of various RF modulation schemes
- RF modulator employing multiphase PWM
- VCO-based opamp
- Proposed multiphase PWM RF modulator
- Measurement results
- Summary

Driving a Gilbert cell with an Analog Signal

- Requires linear transconductors
 - Avoiding linear transconductors helps to reduce analog complexity

RFDAC

The resolution is limited by device mismatch

RFDAC with $\Sigma \Delta$ modulation

Taleie, et al., RFIC 2008

Out-of-band quantization noise needs to be filtered

Up-conversion Using Single-Phase PWM

Key trade-off : ripple frequency versus dynamic range

Up-conversion Using Single-Phase PWM

Key trade-off : ripple frequency versus dynamic range

Can we improve the trade-off between the ripple frequency and the dynamic range of PWM?

Proposed Multi-Phase PWM RF Modulator

Similar approaches:

Weaver, Trans. Broadcasting, 1992

Impact of Phase Adjustment (1)

Impact of Phase Adjustment (2)

Impact of Phase Adjustment (3)

Impact of Phase Adjustment (4)

Impact of Phase Adjustment (5)

Impact of Phase Adjustment (6)

Benefits of the Proposed Approach

- Generates a multi-level signal
 - Increases dynamic range
 - Decreases relative ripple amplitude

Key Implementation Issue

How do we create multiphase PWM signals?

Proposed Multi-Phase PWM generator

Voltage-controlled delay cell

Combine the Outputs using Switched Current Sources

Add Feedback and a Simple Filter

Overall Model of the Multi-Phase PWM Generator

The proposed negative feedback system is similar to opamp

- Dominant pole at DC, and the second pole at 1/RC
- We can consider this structure a VCO-based opamp

Improve Performance with a Current Input

Input voltage set to V_{REF}

- The feedback loop maintains the other VCO input at V_{REF}
- Allows better control of VCO frequency and K_v

Proposed Multi-Phase PWM RF modulator

Die Photograph

- 45nm CMOS process
- Total active area : 0.126 mm²
- Supply voltage
 - RFDAC: 2.5V, IQ LO clock generator: 1.2V, others: 1.1V
- Total current consumption : 45.1mA
 - RFDAC :2.2mA, IQ LO clock generator: 16.6mA, others: 26.3mA

Measured Spectrum with 8 MHz Sine Wave Input

- LO frequency is 2.45 GHz
- IQ gain and phase mismatches are compensated by pre-distortion of the IQ baseband signals

Measured spectrum with a 20 MHz OFDM signal

70 MHz span

400 MHz span

Measured EVM with 10-MHz 64 QAM OFDM (802.11a)

1/f noise degrades the EVM near the carrier frequency

Key Issues for Improving Performance

- VCO non-linearity causes harmonic distortion
 - More difficult for closed loop dynamics to suppress the VCO non-linearity for a wide bandwidth input signal
- VCO phase noise lowers the inband SNR
 - Lower offset frequencies especially impacted

Summary

- Multiphase PWM RF modulator using a VCO-based opamp was presented
 - Several advantages over single-phase PWM
 - Higher ripple frequency
 - Resulting multi-level signal improves dynamic range (and therefore improves SNR)
- The prototype chip was fabricated in 45nm CMOS
 - Satisfies the 802.11g WLAN spectral mask
 - Achieves an average measured EVM of –30 dB for 10-MHz, 64 QAM OFDM at 2.4 GHz