
 1

Behavioral Simulation of an Amplitude Resolution
Improvement for an RF-DAC Employing PWM scheme

Min Park

December 2010

Copyright © 2010 by Min Park

All rights reserved.

Table of Contents

Setup .. 2	

Introduction.. 5	

Centered PWM Polar Transmitter Simulations Using Sue2 and CppSimView 8	

A.	
 Opening Sue2 Schematics.. 8	

B.	
 Running the CppSim Simulation ... 13	

C.	
 Plotting the Time Domain Results... 15	

Post-Processing the Simulation Results Using a MATLAB Script ... 17	

Centered PWM Method with Pulse Position Offset .. 18	

A.	
 Modifying the Testbench Schematic ... 18	

B.	
 Post-Processing the Simulation Results... 19	

Comparison of Centered PWM with and without LUT... 20	

A.	
 Opening Sue2 Schematics of a Testbench ... 20	

B.	
 Post-Processing the Simulation Results... 21	

CppSim Simulations for Non-Centered PWM .. 22	

A.	
 Opening Sue2 Schematics of a Testbench ... 22	

B.	
 Post-Processing the Simulation Resultsng a Testbench... 25	

Comparison of Simplified LUT and Full-Size LUT for Non-Centered PWM................................ 26	

A.	
 Opening Sue2 Schematics of a Testbench ... 26	

B.	
 Post-Processing the Simulation Results... 28	

Non-Centered PWM with Different Phase Resolutions .. 30	

A.	
 Opening Sue2 Schematics of a Testbench ... 31	

B.	
 Post-Processing the Simulation Results... 31	

Conclusion ... 33	

Reference ... 33	

 2

Setup

Download and install the CppSim Version 4 package (i.e., download and run the self-extracting
file named setup_cppsim4.exe) located at:

http://www.cppsim.com

Upon completion of the installation, you will see icons on the Windows desktop corresponding to
the PLL Design Assistant, CppSimView, GTKWave, and Sue2. Please read the “CppSim
(Version 4) Primer” document, which is also at the same web address, to become acquainted with
CppSim and its various components.

To run this tutorial, you will also need to download the file pwm_polar_tx.tar.gz available at
http://www.cppsim.com, and place it in the Import_Export directory of CppSim (assumed to be
c:/CppSim/Import_Export). Once you do so, start up Sue2 by clicking on its icon, and then click
on Tools->Library Manager as shown in the figure below.

In the CppSim Library Manager window that appears, click on the Import Library Tool button
as shown in the figure below.

 3

In the Import CppSim Library window that appears, change the Destination Library to
Pwm_polar_tx, click on the Source File/Library labeled as pwm_polar_tx.tar.gz, and then
press the Import button as shown in the figure below. Note that if pwm_polar_tx.tar.gz does not
appear as an option in the Source File/Library selection listbox, then you need to place this file
(downloaded from http://www.cppsim.com) in the c:/CppSim/Import_Export directory.

 4

Once you have completed the above steps, restart Sue2 as directed in the above figure.

 5

Introduction

Nowadays, most wireless applications require extensive digital functionality. Ideally, integrating
RF circuits with digital logic is desired for lower cost, form factor, and power dissipation. Some
RF transmitters presented in recent publications have suggested using an RF digital-to-analog
converter (RF-DAC) for easier system-on-a-chip (SoC) implementation [1]–[4]. Among them, the
commercial single-chip Global System for Mobile Communications (GSM)/Enhanced Data rates
for GSM Evolution (EDGE) transceiver in [1] and [2] is unique in that it uses an array of unit-
weighted transistor switches to control the output RF amplitude instead of using a traditional
current-source-based digital-to-analog converter (DAC) structure.

Figure 1 Polar transmitter based on a DCO and a DPA circuits.

Figure 1 illustrates the polar transmitter introduced in [1] and [2]. The in-phase/quadrature
baseband data are converted into amplitude and phase/frequency polar components. The frequency
signal is fed into the digitally controlled oscillator (DCO)-based NF -bit digital-to-frequency
converter. The amplitude signal drives the NA-bit digital-to-RF-amplitude converter (DRAC),
which includes a digitally controlled power amplifier (DPA). The amplitude of the output RF
carrier signal is controlled by the number of engaged switching devices. The DRAC controls the
envelope of the phase-modulated RF carrier, and thus, it is considered an RF-DAC.
The approach in [1] and [2] proved that the architecture in Figure 1 is feasible for SoC, and it
meets all GSM and EDGE specifications. However, the resolution of the amplitude path is limited
by lithography and RF mismatches of the switching devices in the DPA, and consequently, the
polar transmitter has little margin in the far-out (i.e., the associated receiving (RX) band) noise
limit of the surface acoustic wave(SAW)-less operation for EDGE.

Figure 2 Amplitude resolution improvement by adding a PWM-driven transistor.

The amplitude resolution of the original DPA from Figure 1 can improve simply by adding one
additional switching device that is driven by a PWM signal as shown in Figure 2. The resolution

 6

improves by turning on the switching devices for only a short time interval within the positive
half-cycle of the RF period. The RF output amplitude will be controlled by the time interval, and
the resolution is determined by the time precision of the turning-on signal. The amplitude
resolution of the DPA in Figure 1 is now limited by the time resolution of the PWM. In modern
CMOS processes, the switching time gets improved by 0.7x per node; hence, achieving higher
resolution in the time-domain is easier than in the voltage/current domain [5].
The output amplitude of a PWM signal at the frequency of interest, however, is incorrect if the
pulse width is chosen in a straightforward way such that the DC amplitude of the PWM signal is
correct [8], [9]. As a result, this inaccurate RF output level at the carrier frequency turns out to
limit the resolution improvement.

Figure 3 Amplitude resolution improvement by (a) horizontal slicing (b) vertical slicing.

To explain this issue, Figure 3 illustrates two different quantization methods for adding an extra 3-
bit resolution in either a voltage or current signal. Intuitively, both signals from Figure 3(a) and (b)
are the same in terms of power because the total area of the signals are the same. However, they
are equivalent only at DC. The powers of those signals are not the same at the carrier frequency
[6], [7]. Therefore, the signal in Figure 3(b) creates an incorrect RF signal even though it creates
an accurate DC signal. An inaccurate RF signal from an RF-DAC leads to higher quantization
noise. Therefore, resolution improvement by PWM is severely impaired if the pulse width is
chosen in a straightforward way [6], [7]. The position of a PWM signal also affects the accuracy of
an RF signal driven by PWM. When the pulse position is not at the center, the phase of the RF
signal is distorted [7].
The inaccurate RF signal from an RF-DAC driven by a centered PWM or a non-centered PWM
signal can be corrected by predistortion digital Look-Up-Tables (LUTs) which can be easily
implemented in digital CMOS processes [6], [7].

Figure 4 Polar transmitter employing centered PWM to increase the amplitude resolution.

 7

Figure 5 Polar transmitter employing non-centered PWM to increase the amplitude resolution.

Figure 4 illustrates the proposed polar transmitter architecture with centered PWM introduced in
[6]. Figure 5 illustrates the one with non-centered PWM introduced in [7]. In this tutorial, we will
see how these proposed transmitter architecture can be modeled in CppSim, and run the
simulations to verify the performance of the proposed PWM schemes. We will also use MATLAB
post-processing scripts to reproduce the simulation results in [6] and [7].

 8

Centered PWM Polar Transmitter Simulations Using Sue2 and CppSimView

In this section, the user will be guided through basic tasks such as opening the PWM polar
transmitter example employing centered PWM within the Sue2 schematic editor and running basic
CppSim simulations.

A. Opening Sue2 Schematics
• Click on the Sue2 icon to start Sue2, and then select the Pwm_polar_tx library from

the schematic listbox. The schematic listbox should now look as follows:

• Click on the centered_PWM schematic. The schematic window should now display
the testbench of the EDGE transmitter model employing the centered PWM scheme as
shown below:

 9

• The baseband EDGE amplitude signal is generated by edge_amponly_gen cell. The

main purpose of the PWM scheme introduced here is to improve the amplitude
resolution of a digital polar transmitter. Therefore, only amplitude signal path is
modeled in this testbench. The amplitude baseband signal goes into the first amplitude
LUT, lut_dpa_10bit_5bit. This LUT compensates for the DPA’s amplitude distortion,
and it is already included in the original polar transmitter system in [1]. The output is
15-bit digital signal, and the 10-bit integer part drives directly a 10-bit DPA, and the 5-
bit fractional part generates the centered PWM signal.

• The output DPA is modeled by dpa_model1 cell. The 10-bit input corresponds to the
digital input of the DPA. The clock input of dpa_model1 upconverts the 10-bit digital
input signal. The DPA’s amplitude non-linearity is also modeled in dpa_model1 cell.

• rfbit10 is the upconverted EDGE signal from the 10-bit DPA. We will compare the
quantization noise of rfbit10 with that of the centered PWM signal.

• The 5-bit fractional part of the baseband signal goes into the LUT for centered PWM,
amp_lut_5bit_dtc25_pwm_center, which is a module with coded functionality.
Double click on xi21 cell, then a new window pops up as shown below:

 10

• Click on Edit button. Then, the following emacs window pops up:

 11

• The module description shown above is based on the amplitude LUT formula explained
in [6].

• The output of the LUT goes into pwm_center_dtc25 which generates a centered PWM
based on 25-stage delay cells. After clicking on pwm_center_dtc25, press e to descend
into its schematic. You will see the schematic below. It is also briefly explained in [6]
and [7]. You may now press Ctrl+e to return to the testbench top level.

 12

• The output of the LUT goes into pwm_center_dtc25 which generates a centered PWM
based on 25-stage delay cells. After clicking on pwm_center_dtc25, press e to descend
into its schematic. You will see the schematic below. It is also briefly explained in [6]
and [7]. You may now press Ctrl+e to return to the testbench top level.

• The pulse position of the PWM signal created by pwm_center_dtc25 is referenced to
the input clock of the module. In the testbench, the input clock is controlled by the
delay element as shown below. By adjusting the delay (by global parameter dll), we
can precisely control the pulse position of the centered PWM signal. This block is
introduced as Pulse Center block in [6] and [7].

 13

• The generated centered PWM signal is added to the original 10-bit DPA signal creating
rfpwmcenter. In other words, the centered PWM signal is added on top of the 10-bit
amplitude signal such that the resolution of the output RF signal improves beyond 10-
bit.

• rfpwmcenter will be compared with rfbit10, which is the output of the original 10-bit
DPA output, in terms of quantization noise.

• rfpwmcentermismatch signal is the same as rfpwmcenter except that it also includes
the delay mismatch effect of the centered PWM generator.

B. Running the CppSim Simulation

• Within Sue2, Click on Tools and then CppSim Simulation. The CppSim Simulation
Window should appear as shown below.

 14

• Double click on the Edit Sim File button. An emacs window should appear that
indicates that the number of simulation steps, num_sim_steps, is set to 1e7 and the
timestep, Ts, is set to 10e-12. We need the finer time step to model the precise PWM
waveform including delay mismatch. However, CppSim employs the signal
discretization technique introduced in [13] such that it can deal with femto second of
time resolution in the simulation even with 10ps of time step.

• Also note that the simulation will save two output files, test.tr0 and testfft.tr0. test.tr0
will store the first 5e5 samples only, so that we can look at the time-domain waveforms
quickly. testfft.tr0 will store the entire simulation results except for the first 1e4
samples. We will use the saved waveforms in testfft.tr0 to see the spectrum of the
output signals. The first 1e4 samples are not saved in order to remove the initial
transient effect.

• Click on the Compile/Run button to launch the simulation. Note that it can take 10
minutes or more to finish the simulation depending on the system CppSim is running
on.

• Click on the CppSimView icon on your desktop to start the CppSim viewer. (You
don’t have to wait until the simulation is completed!)

• Click on the No Output File radio button and select test.tr0 as the output file.
• Click on the No Nodes radio button to load in the simulated signals. CppSimView

should now appear as shown below.

 15

C. Plotting the Time Domain Results

Given the above simulation, we will now take a look at the output signals.

• In the CppSimView window, double-click on signals rfbit10 and rfpwmcenter. You
should see the waveforms shown below.

• In the CppSimView window, click on Zoom. The waveform window will include
buttons as shown below.

 16

• Click on the Zoom button in the waveform window, and then zoom in several times
around 2µs until you observe the waveform below:

• Notice that rfpwmcenter signal shows centered PWM signals on top of the original 10-
bit amplitude output.

 17

Post-Processing the Simulation Results Using a MATLAB Script

While CppSim has a few built-in functions for frequency domain analysis, in this case we find it
convenient to use a customized script in MATLAB. The provided scripts for the each testbench
show the spectrum of the output signal such that we can compare the quantization noise of
different output signals.

• Open MATLAB and set the working directory to the simulation results folder. For

example:

>> cd C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM

• Run the post-processing script centered_PWM.m by typing post into the command

window

>> centered_PWM

• Since the simulation result, testfft.tr0, is a large file, it can take 4 minutes or more to
see the final results from the post-processing script depending on the system MATLAB
is running on. After MATLAB completes processing the data, you should see the
output spectrum for different RF signals from the testbench as shown below:

• The spectrum in red shows the quantization noise of the original 10-bit DPA output.
The spectrum in black and green show the noise skirts of the DPA employing centered
PWM scheme without and with delay mismatch of the PWM signals.

 18

• We observe that the RF output employing the centered PWM scheme improves the
quantization noise by about 18dB compared with the original DPA meeting 3GPP
spectral mask.

Centered PWM Method with Pulse Position Offset

As mentioned in [6] and [7], the pulse position of the PWM plays an important role. The delay
blocks, xi24 and xi30, in centered_PWM testbench are employed to make the pulse positions
center. However, the quantization noise increases when the pulse position of the PWM signal is
not at the center. In this section, we will see the effect of the pulse position offset by modifying
centered_PWM testbench and rerun the simulation.

A. Modifying the Testbench Schematic
• Open the previous testbench by clicking on centered_PWM schematic from the

schematic listbox.
• Change the name of in1 node of xi25 from msb2 to msb as shown below:

• Open CppSim Simulation, and click on Edit Sim File button. Change a global
parameter dll2 value as shown below:

 19

• Now, the centered PWM in the testbench will have 18ps of pulse position offset. Save
test.par file, and run the simulation.

B. Post-Processing the Simulation Results

• Open MATLAB and set the working directory to the simulation results folder, such as
C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM. Run the post-
processing script centered_PWM_positionoffset.m in the command window.

• After MATLAB completes processing the data, you should see the following output
spectrum for the centered PWM signals with and without the position offset:

 20

• The spectrum in green shows that the output spectrum violates the 3GPP specification
if the pulse position of the PWM signal is 18ps off from center.

Comparison of Centered PWM with and without LUT

As pointed out in [6] and [7], the straightforward PWM does not improve the amplitude resolution
much due to the non-linear relationship between the pulsewidth and the RF power at the carrier
frequency. In this section, we will compare the centered PWM scheme with and without the
amplitude LUT.

A. Opening Sue2 Schematics of a Testbench

• Open a new testbench by clicking on centered_PWM_no_LUT schematic from the
schematic listbox. You will see the following schematic:

 21

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window.

B. Post-Processing the Simulation Results

• Open MATLAB and set the working directory to the simulation results folder, such as
C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM_LUT. Run the post-
processing script centered_PWM_LUT.m in the command window.

• After MATLAB completes processing the data, you should see the following output
spectrum for the centered PWM signals with and without the LUT.

 22

• The spectrum in green shows that the output spectrum of the centered PWM without
LUT raises the quantization noise by almost 10dB compared with the PWM with LUT.

CppSim Simulations for Non-Centered PWM

In this section, we will see the CppSim simulation example of a polar transmitter employing non-
centered which is proposed in [7].

A. Opening Sue2 Schematics of a Testbench
• Open a new testbench by clicking on noncentered_PWM schematic from the

schematic listbox. You will see the following schematic:

 23

• In this schematic, only amplitude path of the EDGE signal is modeled as it is in
centered PWM testbenches.

• The EDGE amplitude baseband signal goes into the first amplitude LUT,
lut_dpa_10bit_5bit which compensates for the DPA’s amplitude distortion. The output
is 15-bit digital signal, and the 10-bit integer part drives directly a 10-bit DPA, and the
5-bit fractional part generates the non-centered PWM signal.

• rfbit10 is the upconverted EDGE signal from the 10-bit DPA. We will compare the
quantization noise of rfbit10 with that of the non-centered PWM signal.

• Both the 10-bit integer part and the 5-bit fractional part go into the phase LUT for non-
centered PWM. The phase LUT, ph_approx_lut_5bit_dtc25_noncenter, is realized
based on the LUT approximation method described in [7]. We can see the module
description by double clicking ph_approx_lut_5bit_dtc25_noncenter followed by
clicking Edit button in the new window popped up.

• The 5-bit fractional part of the baseband signal also goes into the amplitude LUT for
non-centered PWM, amp_lut_5bit_dtc25_pwm_noncenter, which is again based on
the LUT approximation method explained in [7].

• The output of the amplitude LUT, amp_lut_5bit_dtc25_pwm_noncenter, goes into
pwm_noncenter_dtc25, which generates a non-centered PWM based on 25-stage
delay cells. After clicking on pwm_noncenter_dtc25, press e to descend into its
schematic. You will see the schematic below. It is falso briefly explained in [4]. You
may now press Ctrl+e to return to the testbench top level.

 24

• Phase compensation of a polar transmitter is done by phase modulation using PLL,
such as two-point modulation [10]. However, in this CppSim testbench, phase
compensation is done by delaying the output waveform as shown below:

 25

• The variable delay cell, xi9, is controlled by the output of the phase LUT such that the
overall RF output signal is phase-compensated creating rfpwmnoncenter.

• rfpwmnoncenter will be compared with rfbit10, which is the output of the original 10-
bit DPA output, in terms of quantization noise.

• rfpwmnoncentermismatch signal is the same as rfpwmnoncenter except that it also
includes the delay mismatch effect of the non-centered PWM generator.

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window.
• Note that the simulation can take 10 minutes or more depending on the system CppSim

simulation is running on.

B. Post-Processing the Simulation Results

• Open MATLAB and set the working directory to the simulation results folder, such as

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM. Run the post-
processing script noncentered_PWM.m in the command window.

• Since the simulation result, testfft.tr0, is a large file, it can take 4 minutes or more to
see the final results from the post-processing script depending on the system MATLAB
is running on. After MATLAB completes processing the data, you should see the
following output spectrum for the non-centered PWM signals with and without delay
mismatch.

 26

• The black line shows the spectrum of the non-centered PWM using both simplified
amplitude and phase LUTs. But, the delay mismatch of the PWM signal generator is
not included. The blue line shows the spectrum of the non-centered PWM with delay
mismatch. Note that the delay mismatch increased the quantization noise, but it still
satisfies 3GPP specification.

•

Comparison of Simplified LUT and Full-Size LUT for Non-Centered PWM

Ideally, the amplitude and the phase LUT for the non-centered PWM require both integer and
fractional word as an input. However, we can use simplified LUT to reduce the size of the LUTs
for EDGE amplitude signal [7]. In this section, we will compare the quantization noise of the non-
centered PWM with the simplified LUTs and the full-size LUTs. In addition, we will also see the
performance degradation without the phase LUT.

A. Opening Sue2 Schematics of a Testbench
• Open a new testbench by clicking on noncentered_PWM_comp schematic from the

schematic listbox. You will see the following schematic.

 27

• In this schematic, rfpwmnoncenter signal is generated from the full-size LUT,
amp_ph_ideal_lut_5bit_dtc25_noncenter, which includes both amplitude and phase
LUTs. The LUT is modeled based on the ideal LUT formula for the amplitude and
phase compensation for non-centered PWM described in [7].

• rfpwmampapprox signal is, on the other hand, generated using the simplified
amplitude LUT, amp_lut_5bit_dtc25_pwm_noncenter. It takes 5-bit input, and
calculates amplitude compensation using the approximation method introduced in [4].
Phase compensation is still done by the full-size LUT.

• rfpwmphapprox signal is generated using the simplified phase LUT,
ph_approx_lut_5bit_dtc25_noncenter which also uses the approximation method for
phase compensation. Amplitude compensation is also done by the simplified LUT,
amp_lut_5bit_dtc25_pwm_noncenter. Thus, rfpwmphapprox signal is generated
using both simplified amplitude and phase LUTs.

• We will compare these three signals to see how the simplified LUTs perform for
EDGE.

• rfpwmnoph signal is created using only amplitude compensation. We will see the
effect of phase compensation for non-centered PWM by comparing it with
rfpwmnoncenter.

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window.

 28

B. Post-Processing the Simulation Results
• Open MATLAB and set the working directory to the simulation results folder, such as

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM_comp. Run the
post-processing script noncentered_PWM_LUT_comp.m in the command window.

• After MATLAB completes processing the data, you should see the three figures.
Figure 1 compares the non-centered PWM with and without the phase LUT as shown
below:

• The blue line shows the spectrum of the non-centered PWM without the phase LUT. Its
quantization noise is much higher than one with the phase LUT. Therefore, the phase
compensation is crucial for non-centered PWM.

• Figure 2 compares the full-size amplitude LUT and the simplified amplitude LUT as
shown below:

 29

• The output spectrum of the non-centered PWM with the simplified amplitude LUT and
the full-size LUT are plotted at the top. Since the spectrum with the simplified LUT is
almost same as that with the full-size LUT, we only see the red lines. At the bottom, the
difference between them is plotted. The maximum difference is less than 0.2 dB as
shown. Therefore, the simplified LUT with amplitude approximation in [7] does not
degraded the performance of the non-centered PWM.

• Figure 3 compares the full-size phase LUT and the simplified phase LUT as shown
below:

 30

• The output spectrum of the non-centered PWM with the simplified phase LUT and the
full-size phase LUT are plotted at the top. Since the spectrum with the simplified LUT
is almost same as that with the full-size LUT, we only see the red lines. At the bottom,
the difference between them is plotted. The maximum difference is less than 0.4 dB as
shown. Therefore, the simplified LUT with phase approximation in [7] does not
degraded the performance of the non-centered PWM.

Non-Centered PWM with Different Phase Resolutions

As shown in the previous section, phase compensation is crucial for non-centered PWM. In a
digital polar transmitter, the accuracy of phase compensation is affected by the phase resolution of
the system. In this section, we will see how the quantization noise of non-centered PWM signal
changes by the phase resolution.

 31

A. Opening Sue2 Schematics of a Testbench
• Open a new testbench by clicking on noncentered_PWM_resolution schematic from

the schematic listbox. You will see the following schematic.

• In this schematic, the resolution for phase compensation is limited by time resolution.
For example, rfpwmresol1 is compensated by13.3fs of time step, which is
approximately 0.005° when the period of the carrier signal is 960ps.

• In a same way, rfpwmresol2 and rfpwmresol3 are compensated by 26.7fs and 133.3fs
of time step, respectively. Thus, the phase resolutions for rfpwmresol2 and
rfpwmresol3 are 0.01° and 0.05°, respectively.

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window.

B. Post-Processing the Simulation Results
• Open MATLAB and set the working directory to the simulation results folder, such as

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM_resolution.
Run the post-processing script noncentered_PWM_LUT_resolution.m in the
command window.

• After MATLAB completes processing the data, you should see the following output
spectrum:

 32

• The quantization noise increases as the phase resolution decreases. The simulation
result shown above shows that the non-centered PWM method can satisfy 3GPP
specification with the phase resolution of 0.01° or above.

 33

Conclusion

In this tutorial, we have presented the simulations of digital polar transmitters employing the PWM
methods to improve the amplitude resolution. We have shown the examples of centered PWM and
non-centered PWM schemes. In order to examine the performance of the proposed PWM schemes
quantitatively, we have used MATLAB scripts to plot the spectrum of the simulation results. With
the simulation examples in this tutorial, the user can easily reproduce the simulation results shown
in [6] and [7], and also explore the proposed PWM scheme further.

Reference

[1] R. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C.
Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K.
Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE J.
Solid-State Circuits, vol. 40, no. 12, pp. 2469–2482, Dec. 2005.

[2] J. Mehta, R. B. Staszewski, O. Eliezer, S. Rezeq, K. Waheed, M. Entezari, G. Feygin, S.
Vemulapalli, V. Zoicas, C.-M. Hung, N. Barton, I. Bashir, K. Maggio, M. Frechette, M.-C.
Lee, J. Wallberg, P. Cruise, N. Yanduru, “A 0.8 mm2 all-digital SAW-less polar
transmitter in 65nm EDGE SoC,” Proc. of IEEE Solid-State Circuits Conf., pp. 58–59, Feb.
2010.

[3] A. Jerng and C. G.Sodini, “A wideband ΔΣ digital-RF modulator for high data rate
transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722, August 2007.

[4] P. Eloranta, P. Seppinen, S. Kallioinen, T. Saarela, and A. P¨arssinen, “A Multimode
Transmitter in 0.13 µm CMOS Using Direct-Digital RF Modulator,” IEEE J. Solid-State
Circuits, vol. 42, no. 12, pp. 2774–2784, Dec. 2007.

[5] R. B. Staszewski, “Digital deep-submicron CMOS frequency synthesis for RF wireless
applications,” Ph.D. thesis, Univ. of Texas at Dallas, Aug. 2002.

[6] M. Park, M. H. Perrott, and R. B. Staszewski, “A Time-Domain Resolution Improvement
of an RF-DAC,” IEEE Tans. Circuits Syst. II, vol. 57, no. 7, pp. 517–521, July 2010.

[7] M. Park, M. H. Perrott, and R. B. Staszewski, “An Amplitude Resolution Improvement of
an RF-DAC Employing Pulse Width Modulation,” submitted for review in IEEE Tans.
Circuits Syst. I.

[8] S. E. Meninger and M. H. Perrott, “A fractional-N frequency synthesizer architecture
utilizing a mismatch compensated PFD/DAC structure for reduced quantization-induced
phase noise,” IEEE Trans. Circuits Syst. II, vol. 50, issue 11, pp. 839–849, Nov. 2003.

[9] M. Nielsen and T. Larsen, “An RF Pulse Width Modulator for Switch-Mode Power
Amplification of Varying Envelope Signals,” Proc. Silicon Monolithic Integrated Circuits
in RF Syst. Top. Meeting, pp. 277-280,Jan. 2007.

[10] R. B. Staszewski, D. Leipold, and P. T. Balsara, “Just-in-time gain estimation of an RF
digitally-controlled oscillator for digital direct frequency modulation,” IEEE Trans.
Circuits Syst. II, vol. 50, issue 11, pp. 887–892, Nov. 2003.

[11] M. Perrott, “Cppsim behavior simulator package.” [Online]. Available:
http://www.cppsim.com

[12] J. Mehta, V. Zoicas, O. Eliezer, R. B. Staszewsk, S. Rezeq, M. Entezari, and P. T. Balsara,
“An efficient linearization scheme for a digital polar EDGE transmitter,” IEEE Trans. on
Circuits Syst. II, vol. 57, no. 3, pp. 193–197, Mar. 2010.

[13] M. Perrott, “Fast and accurate behavioral simulation of fractional-n frequency synthesizers
and other pll/dll circuits,” Proc. 39th Design Automation Conf., 2002, pp. 498–503.

