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Setup 
 
Download and install the CppSim Version 4 package (i.e., download and run the self-extracting 
file named setup_cppsim4.exe) located at: 
 

http://www.cppsim.com 
 

Upon completion of the installation, you will see icons on the Windows desktop corresponding to 
the PLL Design Assistant, CppSimView, GTKWave, and Sue2.  Please read the “CppSim 
(Version 4) Primer” document, which is also at the same web address, to become acquainted with 
CppSim and its various components. 
 
To run this tutorial, you will also need to download the file pwm_polar_tx.tar.gz available at 
http://www.cppsim.com, and place it in the Import_Export directory of CppSim (assumed to be 
c:/CppSim/Import_Export).  Once you do so, start up Sue2 by clicking on its icon, and then click 
on Tools->Library Manager as shown in the figure below. 
 

 
 
In the CppSim Library Manager window that appears, click on the Import Library Tool button 
as shown in the figure below. 
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In the Import CppSim Library window that appears, change the Destination Library to 
Pwm_polar_tx, click on the Source File/Library labeled as pwm_polar_tx.tar.gz, and then 
press the Import button as shown in the figure below.  Note that if pwm_polar_tx.tar.gz does not 
appear as an option in the Source File/Library selection listbox, then you need to place this file 
(downloaded from http://www.cppsim.com) in the c:/CppSim/Import_Export directory. 
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Once you have completed the above steps, restart Sue2 as directed in the above figure. 
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Introduction 
 
Nowadays, most wireless applications require extensive digital functionality. Ideally, integrating 
RF circuits with digital logic is desired for lower cost, form factor, and power dissipation. Some 
RF transmitters presented in recent publications have suggested using an RF digital-to-analog 
converter (RF-DAC) for easier system-on-a-chip (SoC) implementation [1]–[4]. Among them, the 
commercial single-chip Global System for Mobile Communications (GSM)/Enhanced Data rates 
for GSM Evolution (EDGE) transceiver in [1] and [2] is unique in that it uses an array of unit-
weighted transistor switches to control the output RF amplitude instead of using a traditional 
current-source-based digital-to-analog converter (DAC) structure. 

 
Figure 1 Polar transmitter based on a DCO and a DPA circuits. 

Figure 1 illustrates the polar transmitter introduced in [1] and [2]. The in-phase/quadrature 
baseband data are converted into amplitude and phase/frequency polar components. The frequency 
signal is fed into the digitally controlled oscillator (DCO)-based NF -bit digital-to-frequency 
converter. The amplitude signal drives the NA-bit digital-to-RF-amplitude converter (DRAC), 
which includes a digitally controlled power amplifier (DPA). The amplitude of the output RF 
carrier signal is controlled by the number of engaged switching devices. The DRAC controls the 
envelope of the phase-modulated RF carrier, and thus, it is considered an RF-DAC. 
The approach in [1] and [2] proved that the architecture in Figure 1 is feasible for SoC, and it 
meets all GSM and EDGE specifications. However, the resolution of the amplitude path is limited 
by lithography and RF mismatches of the switching devices in the DPA, and consequently, the 
polar transmitter has little margin in the far-out (i.e., the associated receiving (RX) band) noise 
limit of the surface acoustic wave(SAW)-less operation for EDGE. 
 

 
Figure 2 Amplitude resolution improvement by adding a PWM-driven transistor. 

The amplitude resolution of the original DPA from Figure 1 can improve simply by adding one 
additional switching device that is driven by a PWM signal as shown in Figure 2. The resolution 
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improves by turning on the switching devices for only a short time interval within the positive 
half-cycle of the RF period.  The RF output amplitude will be controlled by the time interval, and 
the resolution is determined by the time precision of the turning-on signal. The amplitude 
resolution of the DPA in Figure 1 is now limited by the time resolution of the PWM.  In modern 
CMOS processes, the switching time gets improved by 0.7x per node; hence, achieving higher 
resolution in the time-domain is easier than in the voltage/current domain [5]. 
The output amplitude of a PWM signal at the frequency of interest, however, is incorrect if the 
pulse width is chosen in a straightforward way such that the DC amplitude of the PWM signal is 
correct [8], [9]. As a result, this inaccurate RF output level at the carrier frequency turns out to 
limit the resolution improvement. 
 

 
Figure 3 Amplitude resolution improvement by (a) horizontal slicing (b) vertical slicing. 

To explain this issue, Figure 3 illustrates two different quantization methods for adding an extra 3-
bit resolution in either a voltage or current signal. Intuitively, both signals from Figure 3(a) and (b) 
are the same in terms of power because the total area of the signals are the same. However, they 
are equivalent only at DC. The powers of those signals are not the same at the carrier frequency 
[6], [7]. Therefore, the signal in Figure 3(b) creates an incorrect RF signal even though it creates 
an accurate DC signal. An inaccurate RF signal from an RF-DAC leads to higher quantization 
noise. Therefore, resolution improvement by PWM is severely impaired if the pulse width is 
chosen in a straightforward way [6], [7]. The position of a PWM signal also affects the accuracy of 
an RF signal driven by PWM. When the pulse position is not at the center, the phase of the RF 
signal is distorted [7]. 
The inaccurate RF signal from an RF-DAC driven by a centered PWM or a non-centered PWM 
signal can be corrected by predistortion digital Look-Up-Tables (LUTs) which can be easily 
implemented in digital CMOS processes [6], [7]. 
 

 
Figure 4 Polar transmitter employing centered PWM to increase the amplitude resolution. 
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Figure 5 Polar transmitter employing non-centered PWM to increase the amplitude resolution. 

Figure 4 illustrates the proposed polar transmitter architecture with centered PWM introduced in 
[6]. Figure 5 illustrates the one with non-centered PWM introduced in [7]. In this tutorial, we will 
see how these proposed transmitter architecture can be modeled in CppSim, and run the 
simulations to verify the performance of the proposed PWM schemes. We will also use MATLAB 
post-processing scripts to reproduce the simulation results in [6] and [7]. 
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Centered PWM Polar Transmitter Simulations Using Sue2 and CppSimView 
 
In this section, the user will be guided through basic tasks such as opening the PWM polar 
transmitter example employing centered PWM within the Sue2 schematic editor and running basic 
CppSim simulations. 

A. Opening Sue2 Schematics 
• Click on the Sue2 icon to start Sue2, and then select the Pwm_polar_tx library from 

the schematic listbox. The schematic listbox should now look as follows: 

 
 

• Click on the centered_PWM schematic. The schematic window should now display 
the testbench of the EDGE transmitter model employing the centered PWM scheme as 
shown below:  



 9 

 
 
• The baseband EDGE amplitude signal is generated by edge_amponly_gen cell. The 

main purpose of the PWM scheme introduced here is to improve the amplitude 
resolution of a digital polar transmitter. Therefore, only amplitude signal path is 
modeled in this testbench. The amplitude baseband signal goes into the first amplitude 
LUT, lut_dpa_10bit_5bit. This LUT compensates for the DPA’s amplitude distortion, 
and it is already included in the original polar transmitter system in [1]. The output is 
15-bit digital signal, and the 10-bit integer part drives directly a 10-bit DPA, and the 5-
bit fractional part generates the centered PWM signal. 

• The output DPA is modeled by dpa_model1 cell. The 10-bit input corresponds to the 
digital input of the DPA. The clock input of dpa_model1 upconverts the 10-bit digital 
input signal. The DPA’s amplitude non-linearity is also modeled in dpa_model1 cell. 

• rfbit10 is the upconverted EDGE signal from the 10-bit DPA. We will compare the 
quantization noise of rfbit10 with that of the centered PWM signal. 

•  The 5-bit fractional part of the baseband signal goes into the LUT for centered PWM, 
amp_lut_5bit_dtc25_pwm_center, which is a module with coded functionality. 
Double click on xi21 cell, then a new window pops up as shown below: 
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• Click on Edit button. Then, the following emacs window pops up: 
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• The module description shown above is based on the amplitude LUT formula explained 
in [6]. 

• The output of the LUT goes into pwm_center_dtc25 which generates a centered PWM 
based on 25-stage delay cells. After clicking on pwm_center_dtc25, press e to descend 
into its schematic. You will see the schematic below. It is also briefly explained in [6] 
and [7]. You may now press Ctrl+e to return to the testbench top level. 
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• The output of the LUT goes into pwm_center_dtc25 which generates a centered PWM 
based on 25-stage delay cells. After clicking on pwm_center_dtc25, press e to descend 
into its schematic. You will see the schematic below. It is also briefly explained in [6] 
and [7]. You may now press Ctrl+e to return to the testbench top level. 

• The pulse position of the PWM signal created by pwm_center_dtc25 is referenced to 
the input clock of the module. In the testbench, the input clock is controlled by the 
delay element as shown below. By adjusting the delay (by global parameter dll), we 
can precisely control the pulse position of the centered PWM signal. This block is 
introduced as Pulse Center block in [6] and [7]. 
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• The generated centered PWM signal is added to the original 10-bit DPA signal creating 
rfpwmcenter. In other words, the centered PWM signal is added on top of the 10-bit 
amplitude signal such that the resolution of the output RF signal improves beyond 10-
bit. 

• rfpwmcenter will be compared with rfbit10, which is the output of the original 10-bit 
DPA output, in terms of quantization noise. 

• rfpwmcentermismatch signal is the same as rfpwmcenter except that it also includes 
the delay mismatch effect of the centered PWM generator. 

 

B. Running the CppSim Simulation 
 

• Within Sue2, Click on Tools and then CppSim Simulation.  The CppSim Simulation 
Window should appear as shown below. 
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• Double click on the Edit Sim File button.  An emacs window should appear that 
indicates that the number of simulation steps, num_sim_steps, is set to 1e7 and the 
timestep, Ts, is set to 10e-12. We need the finer time step to model the precise PWM 
waveform including delay mismatch. However, CppSim employs the signal 
discretization technique introduced in [13] such that it can deal with femto second of 
time resolution in the simulation even with 10ps of time step. 

• Also note that the simulation will save two output files, test.tr0 and testfft.tr0. test.tr0 
will store the first 5e5 samples only, so that we can look at the time-domain waveforms 
quickly. testfft.tr0 will store the entire simulation results except for the first 1e4 
samples. We will use the saved waveforms in testfft.tr0 to see the spectrum of the 
output signals. The first 1e4 samples are not saved in order to remove the initial 
transient effect. 

• Click on the Compile/Run button to launch the simulation. Note that it can take 10 
minutes or more to finish the simulation depending on the system CppSim is running 
on. 

• Click on the CppSimView icon on your desktop to start the CppSim viewer. (You 
don’t have to wait until the simulation is completed!) 

• Click on the No Output File radio button and select test.tr0 as the output file. 
• Click on the No Nodes radio button to load in the simulated signals. CppSimView 

should now appear as shown below. 
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C. Plotting the Time Domain Results 
 
Given the above simulation, we will now take a look at the output signals.  
 

• In the CppSimView window, double-click on signals rfbit10 and rfpwmcenter. You 
should see the waveforms shown below. 

 
 

• In the CppSimView window, click on Zoom. The waveform window will include 
buttons as shown below. 
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• Click on the Zoom button in the waveform window, and then zoom in several times 
around 2µs until you observe the waveform below: 

 
 

• Notice that rfpwmcenter signal shows centered PWM signals on top of the original 10-
bit amplitude output. 
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Post-Processing the Simulation Results Using a MATLAB Script 
 

While CppSim has a few built-in functions for frequency domain analysis, in this case we find it 
convenient to use a customized script in MATLAB. The provided scripts for the each testbench 
show the spectrum of the output signal such that we can compare the quantization noise of 
different output signals. 

 
• Open MATLAB and set the working directory to the simulation results folder. For 

example: 
 
>> cd C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM 
 
• Run the post-processing script centered_PWM.m by typing post into the command 

window 
 

>> centered_PWM 
 

• Since the simulation result, testfft.tr0, is a large file, it can take 4 minutes or more to 
see the final results from the post-processing script depending on the system MATLAB 
is running on. After MATLAB completes processing the data, you should see the 
output spectrum for different RF signals from the testbench as shown below: 

 
 

• The spectrum in red shows the quantization noise of the original 10-bit DPA output. 
The spectrum in black and green show the noise skirts of the DPA employing centered 
PWM scheme without and with delay mismatch of the PWM signals. 
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• We observe that the RF output employing the centered PWM scheme improves the 
quantization noise by about 18dB compared with the original DPA meeting 3GPP 
spectral mask. 

 
 
Centered PWM Method with Pulse Position Offset 
 
As mentioned in [6] and [7], the pulse position of the PWM plays an important role. The delay 
blocks, xi24 and xi30, in centered_PWM testbench are employed to make the pulse positions 
center. However, the quantization noise increases when the pulse position of the PWM signal is 
not at the center. In this section, we will see the effect of the pulse position offset by modifying 
centered_PWM testbench and rerun the simulation. 

A. Modifying the Testbench Schematic 
• Open the previous testbench by clicking on centered_PWM schematic from the 

schematic listbox. 
• Change the name of in1 node of xi25 from msb2 to msb as shown below: 

 
 

• Open CppSim Simulation, and click on Edit Sim File button. Change a global 
parameter dll2 value as shown below: 
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• Now, the centered PWM in the testbench will have 18ps of pulse position offset. Save 
test.par file, and run the simulation. 

 

B. Post-Processing the Simulation Results 
 

• Open MATLAB and set the working directory to the simulation results folder, such as 
C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM. Run the post-
processing script centered_PWM_positionoffset.m in the command window. 

• After MATLAB completes processing the data, you should see the following output 
spectrum for the centered PWM signals with and without the position offset: 
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• The spectrum in green shows that the output spectrum violates the 3GPP specification 
if the pulse position of the PWM signal is 18ps off from center. 
 

 
Comparison of Centered PWM with and without LUT 
 
As pointed out in [6] and [7], the straightforward PWM does not improve the amplitude resolution 
much due to the non-linear relationship between the pulsewidth and the RF power at the carrier 
frequency. In this section, we will compare the centered PWM scheme with and without the 
amplitude LUT. 
 

A. Opening Sue2 Schematics of a Testbench 
 

• Open a new testbench by clicking on centered_PWM_no_LUT schematic from the 
schematic listbox. You will see the following schematic: 
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• Run a simulation by clicking on Compile/Run button in CppSim Simulation window. 
 

B. Post-Processing the Simulation Results 
 

• Open MATLAB and set the working directory to the simulation results folder, such as 
C:\CppSim\SimRuns\Pwm_polar_tx\centered_PWM_LUT. Run the post-
processing script centered_PWM_LUT.m in the command window. 

• After MATLAB completes processing the data, you should see the following output 
spectrum for the centered PWM signals with and without the LUT. 
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• The spectrum in green shows that the output spectrum of the centered PWM without 
LUT raises the quantization noise by almost 10dB compared with the PWM with LUT. 

 
 
CppSim Simulations for Non-Centered PWM 
 
In this section, we will see the CppSim simulation example of a polar transmitter employing non-
centered which is proposed in [7]. 
 

A. Opening Sue2 Schematics of a Testbench 
• Open a new testbench by clicking on noncentered_PWM schematic from the 

schematic listbox. You will see the following schematic: 
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• In this schematic, only amplitude path of the EDGE signal is modeled as it is in 
centered PWM testbenches. 

• The EDGE amplitude baseband signal goes into the first amplitude LUT, 
lut_dpa_10bit_5bit which compensates for the DPA’s amplitude distortion. The output 
is 15-bit digital signal, and the 10-bit integer part drives directly a 10-bit DPA, and the 
5-bit fractional part generates the non-centered PWM signal. 

• rfbit10 is the upconverted EDGE signal from the 10-bit DPA. We will compare the 
quantization noise of rfbit10 with that of the non-centered PWM signal. 

•  Both the 10-bit integer part and the 5-bit fractional part go into the phase LUT for non-
centered PWM. The phase LUT, ph_approx_lut_5bit_dtc25_noncenter, is realized 
based on the LUT approximation method described in [7]. We can see the module 
description by double clicking ph_approx_lut_5bit_dtc25_noncenter followed by 
clicking Edit button in the new window popped up. 

• The 5-bit fractional part of the baseband signal also goes into the amplitude LUT for 
non-centered PWM, amp_lut_5bit_dtc25_pwm_noncenter, which is again based on 
the LUT approximation method explained in [7]. 

• The output of the amplitude LUT, amp_lut_5bit_dtc25_pwm_noncenter, goes into 
pwm_noncenter_dtc25, which generates a non-centered PWM based on 25-stage 
delay cells. After clicking on pwm_noncenter_dtc25, press e to descend into its 
schematic. You will see the schematic below. It is falso briefly explained in [4]. You 
may now press Ctrl+e to return to the testbench top level. 
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• Phase compensation of a polar transmitter is done by phase modulation using PLL, 
such as two-point modulation [10]. However, in this CppSim testbench, phase 
compensation is done by delaying the output waveform as shown below: 
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• The variable delay cell, xi9, is controlled by the output of the phase LUT such that the 
overall RF output signal is phase-compensated creating rfpwmnoncenter. 

• rfpwmnoncenter will be compared with rfbit10, which is the output of the original 10-
bit DPA output, in terms of quantization noise. 

• rfpwmnoncentermismatch signal is the same as rfpwmnoncenter except that it also 
includes the delay mismatch effect of the non-centered PWM generator. 

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window. 
• Note that the simulation can take 10 minutes or more depending on the system CppSim 

simulation is running on. 
 

B. Post-Processing the Simulation Results 
 
• Open MATLAB and set the working directory to the simulation results folder, such as 

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM. Run the post-
processing script noncentered_PWM.m in the command window. 

• Since the simulation result, testfft.tr0, is a large file, it can take 4 minutes or more to 
see the final results from the post-processing script depending on the system MATLAB 
is running on. After MATLAB completes processing the data, you should see the 
following output spectrum for the non-centered PWM signals with and without delay 
mismatch. 
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• The black line shows the spectrum of the non-centered PWM using both simplified 
amplitude and phase LUTs. But, the delay mismatch of the PWM signal generator is 
not included. The blue line shows the spectrum of the non-centered PWM with delay 
mismatch. Note that the delay mismatch increased the quantization noise, but it still 
satisfies 3GPP specification. 

•  
 
Comparison of Simplified LUT and Full-Size LUT for Non-Centered PWM 
 
Ideally, the amplitude and the phase LUT for the non-centered PWM require both integer and 
fractional word as an input. However, we can use simplified LUT to reduce the size of the LUTs 
for EDGE amplitude signal [7]. In this section, we will compare the quantization noise of the non-
centered PWM with the simplified LUTs and the full-size LUTs. In addition, we will also see the 
performance degradation without the phase LUT. 
 

A. Opening Sue2 Schematics of a Testbench 
• Open a new testbench by clicking on noncentered_PWM_comp schematic from the 

schematic listbox. You will see the following schematic. 
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• In this schematic, rfpwmnoncenter signal is generated from the full-size LUT, 
amp_ph_ideal_lut_5bit_dtc25_noncenter, which includes both amplitude and phase 
LUTs. The LUT is modeled based on the ideal LUT formula for the amplitude and 
phase compensation for non-centered PWM described in [7]. 

• rfpwmampapprox signal is, on the other hand, generated using the simplified 
amplitude LUT, amp_lut_5bit_dtc25_pwm_noncenter. It takes 5-bit input, and 
calculates amplitude compensation using the approximation method introduced in [4]. 
Phase compensation is still done by the full-size LUT. 

• rfpwmphapprox signal is generated using the simplified phase LUT, 
ph_approx_lut_5bit_dtc25_noncenter which also uses the approximation method for 
phase compensation. Amplitude compensation is also done by the simplified LUT, 
amp_lut_5bit_dtc25_pwm_noncenter. Thus, rfpwmphapprox signal is generated 
using both simplified amplitude and phase LUTs. 

• We will compare these three signals to see how the simplified LUTs perform for 
EDGE. 

• rfpwmnoph signal is created using only amplitude compensation. We will see the 
effect of phase compensation for non-centered PWM by comparing it with 
rfpwmnoncenter. 

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window. 
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B. Post-Processing the Simulation Results 
• Open MATLAB and set the working directory to the simulation results folder, such as 

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM_comp. Run the 
post-processing script noncentered_PWM_LUT_comp.m in the command window. 

• After MATLAB completes processing the data, you should see the three figures. 
Figure 1 compares the non-centered PWM with and without the phase LUT as shown 
below: 

 
 

• The blue line shows the spectrum of the non-centered PWM without the phase LUT. Its 
quantization noise is much higher than one with the phase LUT. Therefore, the phase 
compensation is crucial for non-centered PWM. 

• Figure 2 compares the full-size amplitude LUT and the simplified amplitude LUT as 
shown below: 
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• The output spectrum of the non-centered PWM with the simplified amplitude LUT and 
the full-size LUT are plotted at the top. Since the spectrum with the simplified LUT is 
almost same as that with the full-size LUT, we only see the red lines. At the bottom, the 
difference between them is plotted. The maximum difference is less than 0.2 dB as 
shown. Therefore, the simplified LUT with amplitude approximation in [7] does not 
degraded the performance of the non-centered PWM. 

• Figure 3 compares the full-size phase LUT and the simplified phase LUT as shown 
below: 
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• The output spectrum of the non-centered PWM with the simplified phase LUT and the 
full-size phase LUT are plotted at the top. Since the spectrum with the simplified LUT 
is almost same as that with the full-size LUT, we only see the red lines. At the bottom, 
the difference between them is plotted. The maximum difference is less than 0.4 dB as 
shown. Therefore, the simplified LUT with phase approximation in [7] does not 
degraded the performance of the non-centered PWM. 
 

 
Non-Centered PWM with Different Phase Resolutions 
 
As shown in the previous section, phase compensation is crucial for non-centered PWM. In a 
digital polar transmitter, the accuracy of phase compensation is affected by the phase resolution of 
the system. In this section, we will see how the quantization noise of non-centered PWM signal 
changes by the phase resolution. 
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A. Opening Sue2 Schematics of a Testbench 
• Open a new testbench by clicking on noncentered_PWM_resolution schematic from 

the schematic listbox. You will see the following schematic. 

 
 

• In this schematic, the resolution for phase compensation is limited by time resolution. 
For example, rfpwmresol1 is compensated by13.3fs of time step, which is 
approximately 0.005° when the period of the carrier signal is 960ps. 

• In a same way, rfpwmresol2 and rfpwmresol3 are compensated by 26.7fs and 133.3fs 
of time step, respectively. Thus, the phase resolutions for rfpwmresol2 and 
rfpwmresol3 are 0.01° and 0.05°, respectively. 

• Run a simulation by clicking on Compile/Run button in CppSim Simulation window. 

B. Post-Processing the Simulation Results 
• Open MATLAB and set the working directory to the simulation results folder, such as 

C:\CppSim\SimRuns\Pwm_polar_tx\noncentered_PWM_resolution. 
Run the post-processing script noncentered_PWM_LUT_resolution.m in the 
command window. 

• After MATLAB completes processing the data, you should see the following output 
spectrum: 
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• The quantization noise increases as the phase resolution decreases. The simulation 
result shown above shows that the non-centered PWM method can satisfy 3GPP 
specification with the phase resolution of 0.01° or above. 
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Conclusion 
 
In this tutorial, we have presented the simulations of digital polar transmitters employing the PWM 
methods to improve the amplitude resolution. We have shown the examples of centered PWM and 
non-centered PWM schemes. In order to examine the performance of the proposed PWM schemes 
quantitatively, we have used MATLAB scripts to plot the spectrum of the simulation results. With 
the simulation examples in this tutorial, the user can easily reproduce the simulation results shown 
in [6] and [7], and also explore the proposed PWM scheme further. 
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