
Behavioral Simulation of a High-Speed Link Transceiver
Using VppSim

6.22s High-Speed I/O Design Techniques

Sanquan Song, Vladimir Stojanovic

July 12, 2008

Table of Contents

Introduction ... 2
Preliminaries.. 2

A. Opening Cadence Schematics .. 2
B. Running VppSim Simulations .. 5

Coefficients Setting and Time-Domain Results Plotting .. 7
A. Determines the channel, data rate and generates the corresponding impulse response 7
B. Determine the pre-emphasis taps.. 8
C. Draw the eye diagram... 8
D. Count the error bits... 9
E. Check the CDR performance.. 9

Conclusions ... 10
Appendix I: Run VppSim within Matlab .. 11
Appendix II: Tx-emphasis Adaptation and DFE Adaption... 12

 1

Introduction

Pre-emphasis, clock-data-recovery (CDR) and decision-feed-back (DFE) equalization are the keys
techniques for high-speed-links. Since tutorial Behavioral Simulation of Decision Feedback
Equalizer Architectures Using VppSim covers DFE, this tutorial focuses on the modeling and
simulation of pre-emphasis and clock-data-recovery. The simulation setup includes:

• Transmitter: Pre-emphasis technique
• Channel: FIR filtering with impulse response derived from measurement
• Receiver: Data Sampler with CDR
• Support block: Error Counter

Preliminaries

A. Opening Cadence Schematics
Select the HighSpeedLinks_Examples library from the Cadence Library Manager. The library
should now look as follows:

The schematic is shown below:

 2

Select the link_tx icon within the above schematic, and then press e to descend down into the
associated schematic. The following box will pop up:

Press OK to see the schematic of the transmitter:

 3

The transmitter includes a PRBS data generator (signal_source) and a pre-emphasis (FIR) filter
(eq_setting-from_file and tx_eq). The matlab script transceiver_testBench.m (saved in
…/SimRuns/HighSpeedLinks_Examples/link_top) generates the impulse response from the
measurement into file link_channel.dat and derives the pre-emphasis taps into file eq_taps.dat. Cell
eq_setting-from_file loads the pre-empasis coefficients from the file eq_taps.dat and feed it into the
FIR filter tx_eq.

Press Ctrl+e to return to the top level. Select link_channel, press key e and select CppSim to check
its code:

module: link_channel

description: loads the channel impulse response from link_channel.dat and
convolves it with incomming data stream - time step is Ts for now
- although could try using lower sampling rate since bandlimited channel
and then interpolate at the Rx

parameters:
inputs: double channel_in
outputs: double channel_out
static_variables:
classes: List channel_taps() Filter filt_ch("1","1")

init:

 channel_taps.load("link_channel.dat");
 filt_ch.set(channel_taps,"1");
 filt_ch.reset(0.0);

code:
 filt_ch.inp(channel_in);
 channel_out=filt_ch.out;

Select link_rx cell and press key e to see the details of the receiver. It includes three components:

1. Data sampler
2. Edge sampler
3. Clock Data Recovery Cell

 4

Select cdr cell and press key e to see the details of the Alexander-type clock-data-recovery cell:

The CDR collects the statistic of the signs of the data samples and valid edges samples. If these signs
are prone to be different, the phase of the PLL output will be increased. Otherwise, it will be
decreased until they are independent.
Then press Ctrl+e twice to return to the top level.

B. Running VppSim Simulations

Click Options VppSim to open the VppSim GUI.
Click CppSim radio button within the VppSim GUI.

 5

Click Edit Sim File to check the test.par file:

///
// VppSim Sim File: test.par
// Cell: link_top
// Library: HighSpeedLinks_Examples
///

mex_prototype: [tx_out, tx_out_delay, ch_out, rx_data_out, tx_data_out, ber, counter, del,
xi2.xi8.phase] = link_top(ratio, symbol_freq, trigger_freq, eq_tap_length, num_cdr_phases,
num_maj_votes, delay, num_sim_steps, Ts);

// Number of simulation time steps
num_sim_steps: 5e5

// Time step of simulator (in seconds)
Ts: 1/160e9

// Output File name
output: test

// Nodes to be included in Output File
probe: tx_out tx_out_delay ch_out rx_data_out tx_data_out ber counter del xi2.xi8.phase

///
// Note: Items below can be kept blank if desired
///

// Values for global parameters used in schematic
global_param: ratio=20 symbol_freq=1/Ts/ratio
 trigger_freq=symbol_freq eq_tap_length=5
 num_cdr_phases=20 num_maj_votes= 1024
 delay= 10

// Rerun simulation with different global parameter values
// Example: alter: in_gl = 90:2:98
// See pages 37-38 of CppSim manual (i.e., alter: section)
alter:

Start the simulation by clicking Compile/run button.

 6

Coefficients Setting and Time-Domain Results Plotting

With the Matlab code:
…/VppSim/SimRuns/HighSpeedLinks_Exampls/link_top/Transceiver_testBench.m , you should be
able to

• Determines the channel, data rate and generates the corresponding impulse response
• Set the pre-emphasis taps
• Plot the outputs

A. Determines the channel, data rate and generates the corresponding impulse response

The following code reads the channel s4p file and derives the impulse response. For the current
setting, the data rate is 8Gbps and the simulation oversampling ratio is 20. The VppSim settings (Ts,
ratio), should be consistent with the Matlab code.

%%
%%%%% Part1: Read and plot the s4p file
channelName='channel_data.s4p';
mode='s21';
[f,H]=extract_mode_from_s4p(channelName,mode);
figure(1)
subplot(211),plot(f*1e-9,20*log10(abs(H)),'b'); xlabel('freqyency [GHz]'); ylabel('Transfer function [dB]'); grid
on;

%%
%%%%% Part2: Generate and plot the channel impulse reponse
Tsym = 1/8e9;
Ts=Tsym/20;
imp=xfr_fn_to_imp(f,H,Ts,Tsym); %%% Ts sampled impulse response
nsym_short=300;
 %%% persistance of the impulse response tail in the channel in terms of the number of symbols
imp_short=imp(1:min(length(imp), floor(nsym_short*Tsym/Ts)));
subplot(212), plot(conv(imp, ones(1, floor(Tsym/Ts))),'b.-'); hold on;
save link_channel.dat imp_short -ascii;

 7

B. Determine the pre-emphasis taps
The following code derives the zero-forcing pre-emphasis tap weights.

%%%
%%%%%%%%%% %% Part3: Compute initial ZFE equalizer solution
eq_tap_length=5; % length of the pre-emphasis filter
eq_tap_pre=2; % length of taps for post-cursor
eq_taps=zfe(imp_short,Tsym,Ts,eq_tap_length,eq_tap_pre)
% eq_taps=[0 1 0 0 0];
save eq_taps.dat eq_taps -ascii;

For the current channel, one group of pre-emphasis tap weights is:

[-8.8770e-02 4.7865e-01 -2.7445e-01 1.0411e-01 -5.4023e-02]

Given the existence of the pre-emphasis equalization, the symbol spaced channel response is:

Thus, the channel impulse response and tap weights are set correctly. You can re-run the VppSim
simulation with these new settings.

C. Draw the eye diagram
After re-run the VppSim simulation, the following scripts draws the eye diagram.

%%%
%%%%%%%%%%%%%%%% %% Part4: Eye diagram drawing
%%% Load the signals after simulation
x=loadsig('test.tr0');
lssig(x)
figure(3)
eyesig(x, 2*Tsym, 100*Tsym,'ch_out');

 8

D. Count the error bits
To counter the error bits, an err_counter cell is developed. It sweeps the delay for the transmitted
data within a pre-set range (phase_min, phase_max) until it matches the channel phase delay and then
counts the errors. There are several ways to get this range. For instance, the equalized symbol spaced
pulse response shows that the index for the main tap is 39. (If the pulse response is not available, the
correlation of the transmitter data and received data can give this information too.)
We can set the sweep delay from 35 cycles to 45 cycles. The err_counter finds the right delay (40
cycles) and shows that:

Update... delay = 40.00
of simulated bits=22000 # of errors = 0

E. Check the CDR performance
The following code plot the CDR output phase:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
%% Part5: CDR output phase
y = loadsig('phase.tr0');
lssig(y)
tp = evalsig(y, 'TIME');
phase = evalsig(y, 'phase');
figure(6)
plot(tp, phase);

In the current setting, the number of the CDR output phase is the same as the simulation oversampling
ratio, which is 20. VppSim offers the interpolation function so that there are more CDR phases than
the oversampling ratio.

In the test.par file, parameter delay is 0. Thus, the delay introduced by the delay_sample_scalar cell
is zero. The CDR output phase is:

 9

When delay is 10 (10 simulator time samples), the CDR output phase is:

Conclusions

In this tutorial, a simple behavior model of a high-speed-link transceiver with transmitter pre-
emphasis and Alexander type clock-data-recovery technique is completed. VppSim with Matlab
simulates this model and shows the output waveforms. A Matlab code is developed to derive the zero-
forcing pre-emphasis taps and an error counter cell is given to adjust the phase and count the errors.

 10

Appendix I: Run VppSim within Matlab

VppSim nominally runs as a standalone executable, and interaction with Matlab occurs through file
transfer using ‘probe:’ statements in VppSim and ‘loadsig(‘xxx’)’ statements in Matlab. However,
there are times when it is more convenient to work directly with a VppSim object in Matlab. The ‘mex
prototype:’ command allows automatic generation of a Matlab mex file corresponding to a given
VppSim system which can then be compiled and run directly in Matlab.

You can find the details of this procedure in the CppSim Reference Manual
(http://www.cppsim.com). In the section, we repeat the same simulations with this method.

Go back to the schematic of link_top in the HighSpeedLinks_Examples lib, open the VppSim
GUI, and click button ‘Edit Sim File’ to open test.par file. Be sure that the following script is in the
file:

mex_prototype: [tx_out, tx_out_delay, ch_out, rx_data_out, tx_data_out, ber, counter, del, xi2.xi8.phase] =
link_top(ratio, symbol_freq, trigger_freq, eq_tap_length, num_cdr_phases, num_maj_votes, delay,
num_sim_steps, Ts);

If it is not in your sim file, add it and re-run the simulation once in the VppSim GUI to generate
compile_link_top.m file. Whenever this script is changed, we need to re-run the simulation once in
the VppSim GUI.

Return to the Matlab window, open file
…/SimRuns/HighSpeedLinks_Exampls/link_top/Transceiver_testBench_MexPrototype.m

Before running the simulation, make sure that the Matlab current working directory is:
…/SimRuns/HighSpeedLinks_Exampls/link_top/Transceiver

Thus run command ‘mex -setup’ once and Choose the Template Options file for buiding gcc MEX-
files (i.e., gccopts.sh).

Afterwards, run the command ‘compile_link_top’.

Upon completion of the above, you can then run the mex function (link_top(…)) in Matlab as specified
by the prototype format.

Now we are ready to run Transceiver_testBench_MexPrototype.m, and plot channel transfer function,
pulse response, equalized symbol pulsed response, channel output eye diagram and CDR output
phase.

You are free to change the configurations freely in the Matlab. Mex function transfers them to the
VppSim simulator to guarantee that both of them run with the consistent simulation parameters.

 11

http://www.cppsim.com/

Appendix II: Tx-emphasis Adaptation and DFE Adaption

In the HighSpeedLinks_Examples lib, a framework link_top_pg for Tx-emphasis adaptation is
given. You can find the adaptation engine: eq_setting_from_file_pg cell and please check its code. In
comparison with the link_top schematic, there are several differences:

1. Tx pre-emphasis is adaptive. The adaptive engine monitors the channel output signal and
transmitted stream to generate the adaptation information.

a. The main tap (tap1) and the first post tap (tap2) are adaptive and the rest are fixed.
b. The desired received signal dlev is adaptive
c. It adapts on the positive bits.
d. The error is defined to be the difference between dlev and the received signal given the

condition that +1 is transmitted.
e. It adapts on the fourth bits (adapt_divide_rate = 4). Averaging scheme can reduce the

noise further by reducing the adaptation rate.

2. The output phase of the receiver cdr is fixed (=5) to break the cross-coupling between the pre-
emphasis adaptation loop and cdr phase adaptation loop.

The essential script for adaptation is:

//
///////// Edit this part to make it adaptive ////////////////
//

 if (rx_signal - dlevadapt > 0) //case: error >0
 {
 while (txdatalist.notdone)
 {
 if (txdatalist.read() > 0)
 deltalist.inp(-1 * stepsize * (rx_signal - dlevadapt)); //generates deltas for taps
 else
 deltalist.inp(stepsize * (rx_signal - dlevadapt));
 }
 dlevadapt += stepsize * (rx_signal - dlevadapt) ;
 }
 else //case: error < 0
 {
 while (txdatalist.notdone)
 {
 if (txdatalist.read() > 0)
 deltalist.inp(-1* stepsize * (rx_signal - dlevadapt)); //generates deltas for taps
 else
 deltalist.inp(stepsize * (rx_signal - dlevadapt));
 }
 dlevadapt += stepsize * (rx_signal - dlevadapt);
 }

//
///////// End of Edit ////////////////
//

 12

After running the simulation, you can run the Matlab code
…/VppSim/SimRuns/HighSpeedLinks_Exampls/link_top_pg/Transceiver_pg_testBench.m to check the
results.

Figure 1 Evaluation of the main tap (vec_out_1) and the first post-tap (vec_out_2)

Figure 2 Receiver sampled voltages conditioned on the positive transmitted bits and dlev evolution

Figure 3 Superposition of the channel output eye diagrams before and after convergence with receiver clock.

 13

Figure 4 Channel output eye diagram after convergence with receiver clock.

 14

	 Introduction
	Preliminaries
	A. Opening Cadence Schematics
	B. Running VppSim Simulations

	Coefficients Setting and Time-Domain Results Plotting
	A. Determines the channel, data rate and generates the corresponding impulse response
	
	B. Determine the pre-emphasis taps
	C. Draw the eye diagram
	D. Count the error bits
	E. Check the CDR performance

	Conclusions
	 Appendix I: Run VppSim within Matlab
	 Appendix II: Tx-emphasis Adaptation and DFE Adaption

